scholarly journals Similarities in the General Chemical Composition of Colon Cancer Cells and Their Microvesicles Investigated by Spectroscopic Methods-Potential Clinical Relevance

2020 ◽  
Vol 21 (5) ◽  
pp. 1826
Author(s):  
Joanna Depciuch ◽  
Bartosz Klębowski ◽  
Małgorzata Stec ◽  
Rafał Szatanek ◽  
Kazimierz Węglarczyk ◽  
...  

Colon cancer constitutes 33% of all cancer cases in humans and the majority of patients with metastatic colon cancer still have poor prognosis. An important role in cancer development is the communication between cancer and normal cells. This may occur, among others, through extracellular vesicles (including microvesicles) (MVs), which are being released by both types of cells. MVs may regulate a diverse range of biological processes and are considered as useful cancer biomarkers. Herein, we show that similarity in the general chemical composition between colon cancer cells and their corresponding tumor-derived microvesicles (TMVs) does exist. These results have been confirmed by spectroscopic methods for four colon cancer cell lines: HCT116, LoVo, SW480, and SW620 differing in their aggressiveness/metastatic potential. Our results show that Raman and Fourier Transform InfraRed (FTIR) analysis of the cell lines and their corresponding TMVs did not differ significantly in the characterization of their chemical composition. However, hierarchical cluster analysis of the data obtained by both of the methods revealed that only Raman spectroscopy provides results that are in line with the molecular classification of colon cancer, thus having potential clinical relevance.

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1261
Author(s):  
Nurul Fattin Che Rahim ◽  
Yazmin Hussin ◽  
Muhammad Nazirul Mubin Aziz ◽  
Nurul Elyani Mohamad ◽  
Swee Keong Yeap ◽  
...  

Colorectal cancer (CRC) is the third most common type of cancer worldwide and a leading cause of cancer death. According to the Malaysian National Cancer Registry Report 2012–2016, colorectal cancer was the second most common cancer in Malaysia after breast cancer. Recent treatments for colon cancer cases have caused side effects and recurrence in patients. One of the alternative ways to fight cancer is by using natural products. Curcumin is a compound of the rhizomes of Curcuma longa that possesses a broad range of pharmacological activities. Curcumin has been studied for decades but due to its low bioavailability, its usage as a therapeutic agent has been compromised. This has led to the development of a chemically synthesized curcuminoid analogue, (2E,6E)-2,6-bis(2,3-dimethoxybenzylidine) cyclohexanone (DMCH), to overcome the drawbacks. This study aims to examine the potential of DMCH for cytotoxicity, apoptosis induction, and activation of apoptosis-related proteins on the colon cancer cell lines HT29 and SW620. The cytotoxic activity of DMCH was evaluated using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) cell viability assay on both of the cell lines, HT29 and SW620. To determine the mode of cell death, an acridine orange/propidium iodide (AO/PI) assay was conducted, followed by Annexin V/FITC, cell cycle analysis, and JC-1 assay using a flow cytometer. A proteome profiler angiogenesis assay was conducted to determine the protein expression. The inhibitory concentration (IC50) of DMCH in SW620 and HT29 was 7.50 ± 1.19 and 9.80 ± 0.55 µg/mL, respectively. The treated cells displayed morphological features characteristic of apoptosis. The flow cytometry analysis confirmed that DMCH induced apoptosis as shown by an increase in the sub-G0/G1 population and an increase in the early apoptosis and late apoptosis populations compared with untreated cells. A higher number of apoptotic cells were observed on treated SW620 cells as compared to HT29 cells. Human apoptosis proteome profiler analysis revealed upregulation of Bax and Bad proteins and downregulation of Livin proteins in both the HT29 and SW620 cell lines. Collectively, DMCH induced cell death via apoptosis, and the effect was more pronounced on SW620 metastatic colon cancer cells, suggesting its potential effects as an antimetastatic agent targeting colon cancer cells.


2021 ◽  
Vol 75 (1) ◽  
pp. 923-932
Author(s):  
Dagmara Otto-Ślusarczyk ◽  
Wojciech Graboń ◽  
Magdalena Mielczarek-Puta ◽  
Alicja Chrzanowska ◽  
Anna Barańczyk-Kuźma

Abstract Introduction Glutaminolysis, beside glycolysis, is a key metabolic pathway of a cancer cell that provides energy and substrates for the synthesis of nucleic acids, proteins, and lipids. The pathway is mediated by both mitochondrial and cytosolic enzymes. Neither expression of glutaminolysis enzymes in colon cancer cells nor the influence of various oxygen concentrations on their expression has been studied so far. Objectives The aim of the study was to determine and compare the mRNA expression of enzymes involved in glutaminolysis at various oxygen levels in human primary (SW480) and metastatic (SW620) colon cancer cells cultured in 1% O2 (hypoxia), 10% O2 (tissue normoxia), 21% O2 (atmospheric normoxia). Methods Cell viability was determined by Trypan Blue exclusion (TB) and Thiazolyl Blue Tetrazolium Bromide (MTT). The expression of HIF1α, GLUT1, GLS1, AST1, AST2, ACL, PC and GC1, GC2 at mRNA levelwas determined by RT-qPCR. Results. Correlation between increasing oxygen concentration and cell count was not observed. In both cell lines the number of viable cells was the lowest at 10% oxygen. The enzyme profile and expression of proteins involved in glutaminolysis varied depending on oxygen pressure and type of cell lines. In summary, our findings suggest differences in metabolic adaptation to oxygen availability in vivo between primary and metastatic colon cancer cells.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4417
Author(s):  
Rabin Neupane ◽  
Saloni Malla ◽  
Mariam Sami Abou-Dahech ◽  
Swapnaa Balaji ◽  
Shikha Kumari ◽  
...  

A novel series of 4-anilinoquinazoline analogues, DW (1–10), were evaluated for anticancer efficacy in human breast cancer (BT-20) and human colorectal cancer (CRC) cell lines (HCT116, HT29, and SW620). The compound, DW-8, had the highest anticancer efficacy and selectivity in the colorectal cancer cell lines, HCT116, HT29, and SW620, with IC50 values of 8.50 ± 2.53 µM, 5.80 ± 0.92 µM, and 6.15 ± 0.37 µM, respectively, compared to the non-cancerous colon cell line, CRL1459, with an IC50 of 14.05 ± 0.37 µM. The selectivity index of DW-8 was >2-fold in colon cancer cells incubated with vehicle. We further determined the mechanisms of cell death induced by DW-8 in SW620 CRC cancer cells. DW-8 (10 and 30 µM) induced apoptosis by (1) producing cell cycle arrest at the G2 phase; (2) activating the intrinsic apoptotic pathway, as indicated by the activation of caspase-9 and the executioner caspases-3 and 7; (3) nuclear fragmentation and (4) increasing the levels of reactive oxygen species (ROS). Overall, our results suggest that DW-8 may represent a suitable lead for developing novel compounds to treat CRC.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1438
Author(s):  
Sabeeta Kapoor ◽  
Trace Gustafson ◽  
Mutian Zhang ◽  
Ying-Shiuan Chen ◽  
Jia Li ◽  
...  

There is growing evidence that DNA repair factors have clinical value for cancer treatment. Nucleotide excision repair (NER) proteins, including excision repair cross-complementation group 2 (ERCC2), play a critical role in maintaining genome integrity. Here, we examined ERCC2 expression following epigenetic combination drug treatment. Attention was drawn to ERCC2 for three reasons. First, from online databases, colorectal cancer (CRC) patients exhibited significantly reduced survival when ERCC2 was overexpressed in colon tumors. Second, ERCC2 was the most highly downregulated RNA transcript in human colon cancer cells and rat tumors after treatment with the histone deacetylase 3 (HDAC3) inhibitor sulforaphane (SFN) plus JQ1, which is an inhibitor of the bromodomain and extraterminal domain (BET) family. Third, as reported here, RNA-sequencing of polyposis in rat colon (Pirc) polyps following treatment of rats with JQ1 plus 6-methylsulfinylhexyl isothiocyanate (6-SFN) identified Ercc2 as the most highly downregulated gene. The current work also defined promising second-generation epigenetic drug combinations with enhanced synergy and efficacy, especially in metastasis-lineage colon cancer cells cultured as 3D spheroids and xenografts. This investigation adds to the growing interest in combination approaches that target epigenetic ‘readers’, ‘writers’, and ‘erasers’ that are deregulated in cancer and other pathologies, providing new avenues for precision oncology and cancer interception.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Manuel Valenzuela ◽  
Lorena Bastias ◽  
Iván Montenegro ◽  
Enrique Werner ◽  
Alejandro Madrid ◽  
...  

Antioxidants are known to be beneficial to health. This paper evaluates the potential chemopreventive and anticancer properties of phenolic compounds present in grape juice extracts (GJE) from Autumn Royal and Ribier varieties. The effects of these GJE on viability (SRB day assay) and metastatic potential (migration and invasion parameters) of colon cancer cell lines HT-29 and SW-480 were evaluated. The effects of GJE on two matrix metalloproteinase gene expressions (MMP2 and MMP9) were also evaluated via qRT-PCR. In the former, GJE reduced cell viability in both cell lines in a dose-dependent manner. GJE treatment also reduced cell migration and invasion. Moreover, MMP-2 and MMP-9 gene expression diminished depending on extract and on cell type.Conclusions. These results provide novel information concerning anticancer properties of selected GJE by revealing selective cytotoxicity and the ability to reduce invasiveness of colon cancer cells.


2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Michael Fichtner ◽  
Emir Bozkurt ◽  
Manuela Salvucci ◽  
Christopher McCann ◽  
Katherine A. McAllister ◽  
...  

AbstractColorectal cancer is a molecularly heterogeneous disease. Responses to genotoxic chemotherapy in the adjuvant or palliative setting vary greatly between patients, and colorectal cancer cells often resist chemotherapy by evading apoptosis. Antagonists of an inhibitor of apoptosis proteins (IAPs) can restore defective apoptosis signaling by degrading cIAP1 and cIAP2 proteins and by inhibition of XIAP. Due to the multiple molecular mechanisms-of-action of these targets, responses to IAP antagonist may differ between molecularly distinct colon cancer cells. In this study, responses to the IAP antagonist Birinapant and oxaliplatin/5-fluorouracil (5-FU) were investigated in 14 colon cancer cell lines, representing the consensus molecular subtypes (CMS). Treatment with Birinapant alone did not result in a substantial increase in apoptotic cells in this cell line panel. Annexin-V/PI assays quantified by flow cytometry and high-content screening showed that Birinapant increased responses of CMS1 and partially CMS3 cell lines to oxaliplatin/5-FU, whereas CMS2 cells were not effectively sensitized. FRET-based imaging of caspase-8 and -3 activation validated these differences at the single-cell level, with CMS1 cells displaying sustained activation of caspase-8-like activity during Birinapant and oxaliplatin/5-FU co-treatment, ultimately activating the intrinsic mitochondrial apoptosis pathway. In CMS2 cell lines, Birinapant exhibited synergistic effects in combination with TNFα, suggesting that Birinapant can restore extrinsic apoptosis signaling in the context of inflammatory signals in this subtype. To explore this further, we co-cultured CMS2 and CMS1 colon cancer cells with peripheral blood mononuclear cells. We observed increased cell death during Birinapant single treatment in these co-cultures, which was abrogated by anti-TNFα-neutralizing antibodies. Collectively, our study demonstrates that IAP inhibition is a promising modulator of response to oxaliplatin/5-FU in colorectal cancers of the CMS1 subtype, and may show promise as in the CMS2 subtype, suggesting that molecular subtyping may aid as a patient stratification tool for IAP antagonists in this disease.


1994 ◽  
Vol 266 (3) ◽  
pp. G459-G468 ◽  
Author(s):  
P. Singh ◽  
Z. Xu ◽  
B. Dai ◽  
S. Rajaraman ◽  
N. Rubin ◽  
...  

Gastrin is mitogenic for several colon cancers. To assess a possible autocrine role of gastrin in colon cancers, we examined human colon cancer cell lines for expression of gastrin mRNA and various forms of gastrin. Gastrin mRNA was not detected in the majority of colon cancer cell lines by Northern hybridization but was detected in all human colon cancer lines by the sensitive method of reverse transcriptase-polymerase chain reaction (PCR). Gastrin mRNA was quantitated by the competitive PCR method. The majority of cell lines expressed very low levels of gastrin mRNA (< 1-5 copies/cell); only one cell line expressed > 20 copies/cell. The mature carboxyamidated form of gastrin was not detected in any of the cell lines by radioimmunoassay or immunocytochemistry. Results suggested that either gastrin mRNA expressed by colon cancer cells was altered (mutated) or posttranslational processing of progastrin was incomplete. Gastrin cDNA from all the colon cancer cell lines had an identical sequence to the published sequence of human gastrin cDNA. Specific antibodies against precursor forms of gastrin were used, and significant concentrations of nonamidated (glycine-extended) and prepro forms of gastrin were measured in tumor extracts of representative colon cancer cell lines. The presence of precursor forms of gastrin suggested a lack of one or more of the processing enzymes and/or cofactors. Significant concentrations of the processing enzyme (peptidylglycine alpha-amidating monooxygenase) were detected in colon cancer cells by immunocytochemistry. Therefore, lack of other cofactors or enzymes may be contributing to incomplete processing of precursor forms of gastrin, which merits further investigation. Since low levels of gastrin mRNA were expressed by the majority of human colon cancer cell lines and progastrin was incompletely processed, it seems unlikely that gastrin can function as a viable autocrine growth factor for colon cancer cells. High concentrations of glycine-extended gastrin-17 (GG) (> 10(-6) M) were mitogenic for a gastrin-responsive human colon cancer (DLD-1) cell line in vitro. It remains to be seen if GG or other precursor forms of gastrin are similarly mitogenic in vivo, which may then lend credibility to a possible autocrine role of gastrinlike peptides in colon cancers.


Sign in / Sign up

Export Citation Format

Share Document