scholarly journals Pharmacological Mechanisms Underlying the Neuroprotective Effects of Alpinia oxyphylla Miq. on Alzheimer’s Disease

2020 ◽  
Vol 21 (6) ◽  
pp. 2071 ◽  
Author(s):  
Jia Xu ◽  
Fang Wang ◽  
Jiejie Guo ◽  
Chunshuang Xu ◽  
Yanzi Cao ◽  
...  

Alpinia oxyphylla Miq. (i.e., A. oxyphylla), a traditional Chinese medicine, can exert neuroprotective effects in ameliorating mild cognitive impairment and improving the pathological hallmarks of Alzheimer’s disease (AD). Here, 50 active compounds and 164 putative targets were collected and identified with 251 clinically tested AD-associated target proteins using network pharmacology approaches. Based on the Gene Ontology/Kyoto Encyclopedia of Genes and Genomes pathway enrichments, the compound-target-pathway-disease/protein–protein interaction network constructions, and the network topological analysis, we concluded that A. oxyphylla may have neuroprotective effects by regulating neurotransmitter function, as well as brain plasticity in neuronal networks. Moreover, closely-related AD proteins, including the amyloid-beta precursor protein, the estrogen receptor 1, acetylcholinesterase, and nitric oxide synthase 2, were selected as the bottleneck nodes of network for further verification by molecular docking. Our analytical results demonstrated that terpene, as the main compound of A. oxyphylla extract, exerts neuroprotective effects, providing new insights into the development of a natural therapy for the prevention and treatment of AD.

Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1647
Author(s):  
Anna Bocharova ◽  
Kseniya Vagaitseva ◽  
Andrey Marusin ◽  
Natalia Zhukova ◽  
Irina Zhukova ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative disorder, and represents the most common cause of dementia. In this study, we performed several different analyses to detect loci involved in development of the late onset AD in the Russian population. DNA samples from 472 unrelated subjects were genotyped for 63 SNPs using iPLEX Assay and real-time PCR. We identified five genetic loci that were significantly associated with LOAD risk for the Russian population (TOMM40 rs2075650, APOE rs429358 and rs769449, NECTIN rs6857, APOE ε4). The results of the analysis based on comparison of the haplotype frequencies showed two risk haplotypes and one protective haplotype. The GMDR analysis demonstrated three significant models as a result: a one-factor, a two-factor and a three-factor model. A protein–protein interaction network with three subnetworks was formed for the 24 proteins. Eight proteins with a large number of interactions are identified: APOE, SORL1, APOC1, CD33, CLU, TOMM40, CNTNAP2 and CACNA1C. The present study confirms the importance of the APOE-TOMM40 locus as the main risk locus of development and progress of LOAD in the Russian population. Association analysis and bioinformatics approaches detected interactions both at the association level of single SNPs and at the level of genes and proteins.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wei Zhang ◽  
Mingti Lv ◽  
Yating Shi ◽  
Yonghui Mu ◽  
Zhaoyang Yao ◽  
...  

Background. Huangqi Sijunzi decoction (HQSJZD) is a commonly used conventional Chinese herbal medicine prescription for invigorating Qi, tonifying Yang, and removing dampness. Modern pharmacology and clinical applications of HQSJZD have shown that it has a certain curative effect on Alzheimer’s disease (AD). Methods. The active components and targets of HQSJZD were searched in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The genes corresponding to the targets were retrieved using UniProt and GeneCard database. The herb-compound-target network and protein-protein interaction (PPI) network were constructed by Cytoscape. The core targets of HQSJZD were analysed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The main active compounds of HQSJZD were docked with acetylcholinesterase (AChE). In vitro experiments were conducted to detect the inhibitory and neuroprotective effects of AChE. Results. Compound-target network mainly contained 132 compounds and 255 corresponding targets. The main compounds contained quercetin, kaempferol, formononetin, isorhamnetin, hederagenin, and calycosin. Key targets contained AChE, PTGS2, PPARG, IL-1B, GSK3B, etc. There were 1708 GO items in GO enrichment analysis and 310 signalling pathways in KEGG, mainly including the cAMP signalling pathway, the vascular endothelial growth factor (VEGF) signalling pathway, serotonergic synapses, the calcium signalling pathway, type II diabetes mellitus, arginine and proline metabolism, and the longevity regulating pathway. Molecular docking showed that hederagenin and formononetin were the top 2 compounds of HQSJZD, which had a high affinity with AChE. And formononetin has a good neuroprotective effect, which can improve the oxidative damage of nerve cells. Conclusion. HQSJZD was found to have the potential to treat AD by targeting multiple AD-related targets. Formononetin and hederagenin in HQSJZD may regulate multiple signalling pathways through AChE, which might play a therapeutic role in AD.


2018 ◽  
Vol 9 (1) ◽  
pp. 78
Author(s):  
Liqun Wang ◽  
Hongjia Qian ◽  
Liqun Wang

T0901317, a live X receptor agonist, can reduce amyloid β generation in vitro and in a mouse Alzheimer’s disease (AD) model. To investigate the global molecular effects of T0901317 in mouse hippocampus, we downloaded public GSE31624 generated from the hippocampus of wild-type mice, Tg2576 mice and T0901317-treated Tg2576 mice. Differentially-expressed genes (DEGs) were identified on LIMMA of R software. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment were analyzed through DAVID. Protein- protein interaction and hub genes were obtained based on STRING and Cytoscape. Nine downregulated and 68 upregulated DEGs in T0901317-treated Tg2576 were identified in comparison with untreated Tg2576 mice. Annotation analyses showed these DEGs correlated with transport (BP), membrane (CC) and binding (MF) terms and the dopaminergic synapse pathway. Protein-protein interaction network was built to find out some hub genes by maximal clique centrality. Discs large homolog 4 (Dlg4), the most outstanding gene, was associated with cognition improvement in aged AD mice. T0901317 may impact the development by regulating the Dlg4 expression. In conclusion, we investigated effects of T0901317 therapy on gene expression profiles in the hippocampus of Tg2576 mice and found Dlg4 may serve as putative therapeutics target for AD treatment.


2021 ◽  
Author(s):  
Le Yu ◽  
Shuchen Pei ◽  
Kangyao Yuan ◽  
Jian Zhang ◽  
Jingya Zhao ◽  
...  

Abstract Background:Laminaria japonica has also been reported to have a therapeutic effect on AD, but the mechanism is not entirely clear. To explore the mechanism of Laminaria for the treatment of Alzheimer's disease (AD), the “active components-targets” network and the protein-protein interaction (PPI) network were constructed for analyzing targets’ functions and pathways. Methods:The main active components of Laminaria were extracted using the TCMSP database and were predicted and screened by GeneCards. Cytoscape was used to construct the “drug-components-targets-disease” network. STRING and Cytoscape were applied to map the PPI network. The Gene Ontology (GO) terms and KEGG pathways of targets were analyzed by Metascape. Results: Seven active components involving 23 active targets were obtained. The network analysis elucidated that Laminaria was mainly involved in cell process, metabolic process, response to stress and other biological processes. CASP3, PPARG, RELA, CCND1 and CASP9 played a key role in treating AD by regulating two small cell lung cancer and Toxoplasmosis. Conclusion: This study demonstrated that Laminaria could prevent and treat AD with advantages of multi-components, multi-targets and multi-pathways, which explored a new way for further research on the mechanism of Laminaria in the treatment of AD.


2015 ◽  
Vol 11 (7S_Part_4) ◽  
pp. P206-P207
Author(s):  
Ana Paula Mendes Silva ◽  
Kenia Kelly Fiaux do Nascimento ◽  
Kelly Silva Pereira ◽  
Eduardo de Souza Nicolau ◽  
Lucélia SilvaS Barroso ◽  
...  

2020 ◽  
Vol 21 (5) ◽  
pp. 1766 ◽  
Author(s):  
Wenyong Wu ◽  
Zijia Zhang ◽  
Feifei Li ◽  
Yanping Deng ◽  
Min Lei ◽  
...  

Uncaria alkaloids are the major bioactive chemicals found in the Uncaria genus, which have a long history of clinical application in treating cardiovascular and mental diseases in traditional Chinese medicine (TCM). However, there are gaps in understanding the multiple targets, pathways, and biological activities of Uncaria alkaloids. By constructing the interactions among drug-targets-diseases, network pharmacology provides a systemic methodology and a novel perspective to present the intricate connections among drugs, potential targets, and related pathways. It is a valuable tool for studying TCM drugs with multiple indications, and how these multi-indication drugs are affected by complex interactions in the biological system. To better understand the mechanisms and targets of Uncaria alkaloids, we built an integrated analytical platform based on network pharmacology, including target prediction, protein–protein interaction (PPI) network, topology analysis, gene enrichment analysis, and molecular docking. Using this platform, we revealed the underlying mechanisms of Uncaria alkaloids’ anti-hypertensive effects and explored the possible application of Uncaria alkaloids in preventing Alzheimer’s disease. These results were further evaluated and refined using biological experiments. Our study provides a novel strategy for understanding the holistic pharmacology of TCM, as well as for exploring the multi-indication properties of TCM beyond its traditional applications.


ChemBioChem ◽  
2018 ◽  
Vol 19 (11) ◽  
pp. 1119-1122 ◽  
Author(s):  
Thomas M. T. Jensen ◽  
Louise Albertsen ◽  
Christian R. O. Bartling ◽  
Linda M. Haugaard-Kedström ◽  
Kristian Strømgaard

2014 ◽  
Vol 23 (1) ◽  
pp. 33
Author(s):  
Nathalia Liberato Nascimento ◽  
Iwyson Henrique Fernandes da Costa ◽  
Rivelilson Mendes de Freitas

The objective of this study was to conduct a review about the nutritional aspects and their influences on the pathophysiology of Alzheimer’s disease. The review describes the pathophysiology of Alzheimer’s disease, the generally indicated diets, and the nutritional factors that may aggravate the disease based on a literature review using the following keywords in English and Portuguese: “Alzheimer’s disease”, “physiopathology”, “nutritional aspects”, and “antioxidants”. A total of 100 articles were found, 48 in Lilacs and 52 in MedLine, but only 54 articles were selected for the review. The use of antioxidants as free radical scavengers is generally indicated in diets for Alzheimer’s patients. Studies also suggest that caffeine, vitamin B12, and folic acid have neuroprotective effects. Cohort studies found that a high intake of saturated fatty acids and obesity increase the risk of Alzheimer’s disease. People with Alzheimer’s disease should avoid diets high in carbohydrates and saturated fats, and prefer foods high in antioxidants.Keywords: Alzheimer disease; Antioxidants; Neurophysiology; Review literture as topic.


Sign in / Sign up

Export Citation Format

Share Document