scholarly journals Common Functions of Disordered Proteins across Evolutionary Distant Organisms

2020 ◽  
Vol 21 (6) ◽  
pp. 2105 ◽  
Author(s):  
Arndt Wallmann ◽  
Christopher Kesten

Intrinsically disordered proteins and regions typically lack a well-defined structure and thus fall outside the scope of the classic sequence–structure–function relationship. Hence, classic sequence- or structure-based bioinformatic approaches are often not well suited to identify homology or predict the function of unknown intrinsically disordered proteins. Here, we give selected examples of intrinsic disorder in plant proteins and present how protein function is shared, altered or distinct in evolutionary distant organisms. Furthermore, we explore how examining the specific role of disorder across different phyla can provide a better understanding of the common features that protein disorder contributes to the respective biological mechanism.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lasse Staby ◽  
Katrine Bugge ◽  
Rasmus Greve Falbe-Hansen ◽  
Edoardo Salladini ◽  
Karen Skriver ◽  
...  

Abstract Background Signal fidelity depends on protein–protein interaction–‘hubs’ integrating cues from large interactomes. Recently, and based on a common secondary structure motif, the αα-hubs were defined, which are small α-helical domains of large, modular proteins binding intrinsically disordered transcriptional regulators. Methods Comparative structural biology. Results We assign the harmonin-homology-domain (HHD, also named the harmonin N-terminal domain, NTD) present in large proteins such as harmonin, whirlin, cerebral cavernous malformation 2, and regulator of telomere elongation 1 to the αα-hubs. The new member of the αα-hubs expands functionality to include scaffolding of supra-modular complexes mediating sensory perception, neurovascular integrity and telomere regulation, and reveal novel features of the αα-hubs. As a common trait, the αα-hubs bind intrinsically disordered ligands of similar properties integrating similar cellular cues, but without cross-talk. Conclusion The inclusion of the HHD in the αα-hubs has uncovered new features, exemplifying the utility of identifying groups of hub domains, whereby discoveries in one member may cross-fertilize discoveries in others. These features make the αα-hubs unique models for decomposing signal specificity and fidelity. Using these as models, together with other suitable hub domain, we may advance the functional understanding of hub proteins and their role in cellular communication and signaling, as well as the role of intrinsically disordered proteins in signaling networks.


Author(s):  
Meng Gao ◽  
Ping Li ◽  
Zhengding Su ◽  
Yongqi Huang

Intrinsically disordered proteins (IDPs) are abundant in all species. Their discovery challenges the traditional “sequence−structure−function” paradigm of protein science, because IDPs play important roles in various biological processes without preformed...


2021 ◽  
Vol 8 ◽  
Author(s):  
George V. Papamokos ◽  
George Tziatzos ◽  
Dimitrios G. Papageorgiou ◽  
Spyros Georgatos ◽  
Efthimios Kaxiras ◽  
...  

Protein phosphorylation is a key regulatory mechanism in eukaryotic cells. In the intrinsically disordered histone tails, phosphorylation is often a part of combinatorial post-translational modifications and an integral part of the “histone code” that regulates gene expression. Here, we study the association between two histone H3 tail peptides modified to different degrees, using fully atomistic molecular dynamics simulations. Assuming that the initial conformations are either α-helical or fully extended, we compare the propensity of the two peptides to associate with one another when both are unmodified, one modified and the other unmodified, or both modified. The simulations lead to the identification of distinct inter- and intramolecular interactions in the peptide dimer, highlighting a prominent role of a fine-tuned phosphorylation rheostat in peptide association. Progressive phosphorylation appears to modulate peptide charge, inducing strong and specific intermolecular interactions between the monomers, which do not result in the formation of amorphous or ordered aggregates, as documented by experimental evidence derived from Circular Dichroism and NMR spectroscopy. However, upon complete saturation of positive charges by phosphate groups, this effect is reversed: intramolecular interactions prevail and dimerization of zero-charge peptides is markedly reduced. These findings underscore the role of phosphorylation thresholds in the dynamics of intrinsically disordered proteins. Phosphorylation rheostats might account for the divergent effects of histone modifications on the modulation of chromatin structure.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 101 ◽  
Author(s):  
Vladimir N. Uversky

Functions of intrinsically disordered proteins do not require structure. Such structure-independent functionality has melted away the classic rigid “lock and key” representation of structure–function relationships in proteins, opening a new page in protein science, where molten keys operate on melted locks and where conformational flexibility and intrinsic disorder, structural plasticity and extreme malleability, multifunctionality and binding promiscuity represent a new-fangled reality. Analysis and understanding of this new reality require novel tools, and some of the techniques elaborated for the examination of intrinsically disordered protein functions are outlined in this review.


2020 ◽  
Author(s):  
Michele F. M. Sciacca ◽  
Fabio Lolicato ◽  
Carmelo Tempra ◽  
Federica Scollo ◽  
Bikash R. Sahoo ◽  
...  

<p>Increasing number of human diseases have been shown to be linked to aggregation and amyloid formation by intrinsically disordered proteins (IDPs). Amylin, amyloid-β, and α-synuclein are, indeed, involved in type-II diabetes, Alzheimer’s, and Parkinson’s, respectively. Despite the correlation of the toxicity of these proteins at early aggregation stages with membrane damage, the molecular events underlying the process is quite complex to understand. In this study, we demonstrate the crucial role of free lipids in the formation of lipid-protein complex, which enables an easy membrane insertion for amylin, amyloid-β, and α-synuclein. Experimental results from a variety of biophysical methods and molecular dynamics results reveal this common molecular pathway in membrane poration is shared by amyloidogenic (amylin, amyloid-β, and α-synuclein) and non-amyloidogenic (rat IAPP, β-synuclein) proteins. Based on these results, we propose a “lipid-chaperone” hypothesis as a unifying framework for protein-membrane poration.<b></b></p>


2018 ◽  
Vol 19 (11) ◽  
pp. 3420 ◽  
Author(s):  
Zhengyang Yu ◽  
Xin Wang ◽  
Linsheng Zhang

Abiotic stress affects the growth and development of crops tremendously, worldwide. To avoid adverse environmental effects, plants have evolved various efficient mechanisms to respond and adapt to harsh environmental factors. Stress conditions are associated with coordinated changes in gene expressions at a transcriptional level. Dehydrins have been extensively studied as protectors in plant cells, owing to their vital roles in sustaining the integrity of membranes and lactate dehydrogenase (LDH). Dehydrins are highly hydrophilic and thermostable intrinsically disordered proteins (IDPs), with at least one Lys-rich K-segment. Many dehydrins are induced by multiple stress factors, such as drought, salt, extreme temperatures, etc. This article reviews the role of dehydrins under abiotic stress, regulatory networks of dehydrin genes, and the physiological functions of dehydrins. Advances in our understanding of dehydrin structures, gene regulation and their close relationships with abiotic stresses demonstrates their remarkable ability to enhance stress tolerance in plants.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 428
Author(s):  
Do-Hyoung Kim ◽  
Jongchan Lee ◽  
K. Mok ◽  
Jung Lee ◽  
Kyou-Hoon Han

Elucidating the structural details of proteins is highly valuable and important for the proper understanding of protein function. In the case of intrinsically disordered proteins (IDPs), however, obtaining the structural details is quite challenging, as the traditional structural biology tools have only limited use. Nuclear magnetic resonance (NMR) is a unique experimental tool that provides ensemble conformations of IDPs at atomic resolution, and when studying IDPs, a slightly different experimental strategy needs to be employed than the one used for globular proteins. We address this point by reviewing many NMR investigations carried out on the α-synuclein protein, the aggregation of which is strongly correlated with Parkinson’s disease.


Author(s):  
Vladimir N Uversky

Abstract Although for more than a century a protein function was intimately associated with the presence of unique structure in a protein molecule, recent years witnessed a skyrocket rise of the appreciation of protein intrinsic disorder concept that emphasizes the importance of the biologically active proteins without ordered structures. In different proteins, the depth and breadth of disorder penetrance are different, generating an amusing spatiotemporal heterogeneity of intrinsically disordered proteins (IDPs) and intrinsically disordered protein region regions (IDPRs), which are typically described as highly dynamic ensembles of rapidly interconverting conformations (or a multitude of short lifetime structures). IDPs/IDPRs constitute a substantial part of protein kingdom and have unique functions complementary to functional repertoires of ordered proteins. They are recognized as interaction specialists and global controllers that play crucial roles in regulation of functions of their binding partners and in controlling large biological networks. IDPs/IDPRs are characterized by immense binding promiscuity and are able to use a broad spectrum of binding modes, often resulting in the formation of short lifetime complexes. In their turn, functions of IDPs and IDPRs are controlled by various means, such as numerous posttranslational modifications and alternative splicing. Some of the functions of IDPs/IDPRs are briefly considered in this review to shed some light on the biological roles of short-lived structures at large.


Sign in / Sign up

Export Citation Format

Share Document