scholarly journals Sexually Dimorphic Behavioral Profile in a Transgenic Model Enabling Targeted Recombination in Active Neurons in Response to Ketamine and (2R,6R)-Hydroxynorketamine Administration

2020 ◽  
Vol 21 (6) ◽  
pp. 2142 ◽  
Author(s):  
David P. Herzog ◽  
Ratnadevi M. Mellema ◽  
Floortje Remmers ◽  
Beat Lutz ◽  
Marianne B. Müller ◽  
...  

Background: Rapid-acting antidepressants ketamine and (2R,6R)-hydroxynorketamine ((2R,6R)-HNK) have overcome some of the major limitations of classical antidepressants. However, little is known about sex-specific differences in the behavioral and molecular effects of ketamine and (2R,6R)-HNK in rodents. Methods: We treated mice with an intraperitoneal injection of either saline, ketamine (30 mg kg−1) or (2R,6R)-HNK (10 mg kg−1). We performed a comprehensive behavioral test battery to characterize the Arc-CreERT2 × CAG-Sun1/sfGFP mouse line which enables targeted recombination in active populations. We performed a molecular study in Arc-CreERT2 × CAG-Sun1/sfGFP female mice using both immunohistochemistry and in situ hybridization. Results: Arc-CreERT2 × CAG-Sun1/sfGFP mice showed sex differences in sociability and anxiety tests. Moreover, ketamine and (2R,6R)-HNK had opposite effects in the forced swim test (FST) depending on gender. In addition, in male mice, ketamine-treated animals were less immobile compared to (2R,6R)-HNK, thus showing a different profile of the two drugs in the FST. At the molecular level we identified Bdnf mRNA level to be increased after ketamine treatment in female mice. Conclusion: Arc-CreERT2 × CAG-Sun1/sfGFP mice showed sex differences in social and anxiety behavior and a different pattern between ketamine and (2R,6R)-HNK in the FST in male and female mice. At the molecular level, female mice treated with ketamine showed an increase of Bdnf mRNA level, as previously observed in male mice.

2005 ◽  
Vol 73 (6) ◽  
pp. 3559-3567 ◽  
Author(s):  
Zhongming Ge ◽  
Yan Feng ◽  
Mark T. Whary ◽  
Prashant R. Nambiar ◽  
Shilu Xu ◽  
...  

ABSTRACT Helicobacter hepaticus, which induces chronic hepatitis and typhlocolitis in susceptible mouse strains, produces a cytolethal distending toxin (CDT) consisting of CdtA, CdtB, and CdtC. A cdtB-deficient H. hepaticus isogenic mutant (HhcdtBm7) was generated and characterized for colonization parameters in four intestinal regions (jejunum, ileum, cecum, and colon) of outbred Swiss Webster (SW) mice. Inactivation of the cdtB gene abolished the ability of HhcdtBm7 to colonize female mice at both 8 and 16 weeks postinfection (wpi), whereas HhcdtBm7 colonized all of four intestinal regions of three of five males at 8 wpi and then was eliminated by 16 wpi. Wild-type (WT) H. hepaticus was detected in the corresponding intestinal regions of both male and female mice at 8 and 16 wpi; however, colonization levels of WT H. hepaticus in the cecum and colon of male mice were approximately 1,000-fold higher than in females (P < 0.0079) at 16 wpi. Infection with WT H. hepaticus, but not HhcdtBm7, at 8 wpi was associated with significantly increased mRNA level of ileal and cecal gamma interferon (IFN-γ) in females (P < 0.016 and 0.031 between WT H. hepaticus-infected and sham-dosed females, respectively). In contrast, the mRNA levels of IFN-γ were significantly higher in the colon (P < 0.0079) and trended to be higher in the cecum (P < 0.15) in the HhcdtBm7-colonized male mice versus the sham-dosed controls at 8 wpi. In addition, mRNA levels of ileal IFN-γ were significantly higher in the control females than males at 8 wpi (P < 0.016). There were significantly higher Th1-associated immunoglobulin G2a (IgG2a), Th2-associated IgG1 and mucosal IgA (P < 0.002, 0.002, 0.002, respectively) responses in the mice infected with WT H. hepaticus when compared to HhcdtBm7 at 16 wpi. Colonic interleukin-10 (IL-10) expressions at 16 wpi were significantly lower in both female and male mice colonized by WT H. hepaticus or in males transiently colonized through 8 wpi by HhcdtBm7 versus control mice (P < 0.0159). These lines of evidence indicate that (i) H. hepaticus CDT plays a crucial role in the persistent colonization of H. hepaticus in SW mice; (ii) SW female mice are more resistant to H. hepaticus colonization than male mice; (iii) there was persistent colonization of WT H. hepaticus in cecum, colon, and jejunum but only transient colonization of H. hepaticus in the ileum of female mice; (iv) H. hepaticus colonization was associated with down-regulation of colonic IL-10 production.


Author(s):  
Jazmin A Cole ◽  
Mackenzie N Kehmeier ◽  
Bradley R Bedell ◽  
Sahana Krishna Kumaran ◽  
Grant D Henson ◽  
...  

Abstract Vascular endothelial function declines with age on average, but there is high variability in the magnitude of this decline within populations. Measurements of frailty, known as frailty index (FI), can be used as surrogates for biological age, but it is unknown if frailty relates to the age-related decline in vascular function. To examine this relation, we studied young (4-9 months) and old (23-32 months) C57BL6 mice of both sexes. We found that FI was greater in old compared with young mice, but did not differ between old male and female mice. Middle cerebral artery (MCA) and mesenteric artery endothelium-dependent dilation (EDD) also did not differ between old male and female mice; however, there were sex differences in the relations between FI and EDD. For the MCA, FI was inversely related to EDD among old female mice, but not old male mice. In contrast, for the mesenteric artery, FI was inversely related to EDD among old male mice, but not old female mice. A higher FI was related to a greater improvement in EDD with the superoxide scavenger TEMPOL in the MCAs for old female mice and in the mesenteric arteries for old male mice. FI related to mesenteric artery gene expression negatively for extracellular superoxide dismutase (Sod3) and positively for interleukin-1β (Il1b). In summary, we found that the relation between frailty and endothelial function is dependent on sex and the artery examined. Arterial oxidative stress and pro-inflammatory signaling are potential mediators of the relations of frailty and endothelial function.


2015 ◽  
Vol 308 (5) ◽  
pp. F400-F410 ◽  
Author(s):  
Nikhil Sharma ◽  
Lijun Li ◽  
C. M. Ecelbarger

High fructose intake has been associated with increased incidences of renal disease and hypertension, among other pathologies. Most fructose is cleared by the portal system and metabolized in the liver; however, systemic levels of fructose can rise with increased consumption. We tested whether there were sex differences in the renal responses to a high-fructose diet in mice. Two-month-old male and female C57BL6/129/SV mice ( n = 6 mice per sex per treatment) were randomized to receive control or high-fructose (65% by weight) diets as pelleted chow ad libitum for 3 mo. Fructose feeding did not significantly affect body weight but led to a 19% and 10% increase in kidney weight in male and female mice, respectively. In male mice, fructose increased the expression (∼50%) of renal cortical proteins involved in metabolism, including glucose transporter 5 (facilitative fructose transporter), ketohexokinase, and the insulin receptor (β-subunit). Female mice had lower basal levels of glucose transporter 5, which were unresponsive to fructose. However, female mice had increased urine volume and plasma K+ and decreased plasma Na+ with fructose, whereas male mice were less affected. Likewise, female mice showed a two- to threefold reduction in the expression Na+-K+-2Cl− cotransporter 2 in the thick ascending limb and aquaporin-2 in the collecting duct with fructose relative to female control mice, whereas male mice had no change. Overall, our results support greater proximal metabolism of fructose in male animals and greater distal tubule/collecting duct (electrolyte homeostasis) alterations in female animals. These sex differences may be important determinants of the specific nature of pathologies that develop in association with high fructose consumption.


2019 ◽  
Author(s):  
Alysabeth G. Phillips ◽  
Dillon J. McGovern ◽  
Soo Lee ◽  
Kyu Ro ◽  
David T. Huynh ◽  
...  

AbstractA significant portion of prescription opioid users self-administer orally rather than intravenously. Animal models of opioid addiction have demonstrated that intravenous cues are sufficient to cause drug-seeking. However, intravenous models may not model oral users, and the preference to self-administer orally appears to be partially influenced by the user’s sex. Our objectives were to determine whether oral opioid-associated cues are sufficient for relapse and whether sex differences exist in relapse susceptibility. Mice orally self-administered escalating doses of oxycodone under postprandial (prefed) or non-postprandial (no prefeeding) conditions. Both sexes demonstrated robust cue-induced reinstatement. In separate mice we found that oral oxycodone cues were sufficient to reinstate extinguished oral oxycodone-seeking behavior in the absence of postprandial or prior water self-administration training. During self-administration, we found that female mice earned significantly more mg/kg oxycodone than male mice. Follow-up studies indicated sex differences in psychomotor stimulation and plasma oxycodone/oxymorphone following oral oxycodone administration. In addition, gonadal steroid studies were performed in which we found divergent responses where ovariectomy enhanced and orchiectomy suppressed oral self-administration. While the suppressive effects of orchiectomy were identified across doses and postprandial conditions, the enhancing effects of ovariectomy were selective to non-postprandial conditions. These studies establish that 1) oral drug cues are sufficient to cause reinstatement that is independent of prandial conditions and water-seeking behavior, 2) earned oral oxycodone is larger in female mice compared with male mice potentially through differences in psychomotor stimulation and drug metabolism, and 3) gonadectomy produces divergent effects on oral oxycodone self-administration between sexes.


2020 ◽  
Author(s):  
Diana Tavares-Ferreira ◽  
Pradipta R. Ray ◽  
Ishwarya Sankaranarayanan ◽  
Galo L. Mejia ◽  
Andi Wangzhou ◽  
...  

ABSTRACTBackgroundThere are clinically relevant sex differences in acute and chronic pain mechanisms, but we are only beginning to understand their mechanistic basis. Transcriptome analyses of rodent whole dorsal root ganglion (DRG) have revealed sex differences, mostly in immune cells. We examined the transcriptome and translatome of the mouse DRG with the goal of identifying sex differences.MethodsWe used Translating Ribosome Affinity Purification (TRAP) sequencing and behavioral pharmacology to test the hypothesis that nociceptor (Nav1.8 expressing neurons) translatomes would differ by sex.ResultsWe found 66 genes whose mRNA were sex-differentially bound to nociceptor ribosomes. Many of these genes have known neuronal functions but have not been explored in sex differences in pain. We focused on Ptgds, which was increased in female mice. The mRNA encodes the prostaglandin D2 (PGD2) synthesizing enzyme. We observed increased Ptgds protein and PGD2 in female mouse DRG. The Ptgds inhibitor AT-56 caused intense pain behaviors in male mice but was only effective at high doses in females. Conversely, female mice responded more robustly to another major prostaglandin, PGE2, than did male mice. Ptgds protein expression was also higher in female cortical neurons, suggesting DRG findings may be generalizable to other nervous system structures.ConclusionsNociceptor TRAP sequencing (TRAP-seq) reveals unexpected sex differences in one of the oldest known nociceptive signaling molecule families, the prostaglandins. Our results demonstrate that translatome analysis reveals physiologically relevant sex differences important for fundamental protective behaviors driven by nociceptors.


Stroke ◽  
2020 ◽  
Vol 51 (7) ◽  
pp. 2249-2254 ◽  
Author(s):  
Ari Dienel ◽  
Remya Ammassam Veettil ◽  
Sung-Ha Hong ◽  
Kanako Matsumura ◽  
Peeyush Kumar T. ◽  
...  

Background and Purpose: Delayed neurological deficits are a devastating consequence of subarachnoid hemorrhage (SAH), which affects about 30% of surviving patients. Although a very serious concern, delayed deficits are understudied in experimental SAH models; it is not known whether rodents recapitulate the delayed clinical decline seen in SAH patients. We hypothesized that mice with SAH develop delayed functional deficits and that microthrombi and infarction correlate with delayed decline. Methods: Adult C57BL/6J mice of both sexes were subjected to endovascular perforation to induce SAH. Mice were allowed to survive for up to 1 week post-ictus and behavioral performance was assessed daily. Postmortem microthrombi, large artery diameters (to assess vasospasm), and infarct volume were measured. These measures were analyzed for differences between SAH mice that developed delayed deficits and SAH mice that did not get delayed deficits. Correlation analyses were performed to identify which measures correlated with delayed neurological deficits, sex, and infarction. Results: Twenty-three percent of males and 47% of females developed delayed deficits 3 to 6 days post-SAH. Female mice subjected to SAH had a significantly higher incidence of delayed deficits than male mice with SAH. Mice that developed delayed deficits had significantly more microthrombi and larger infarct volumes than SAH mice that did not get delayed deficits. Microthrombi positively correlated with infarct volume, and both microthrombi and infarction correlated with delayed functional deficits. Vasospasm did not correlate with either infarction delayed functional deficits. Conclusions: We discovered that delayed functional deficits occur in mice following SAH. Sex differences were seen in the prevalence of delayed deficits. The mechanism by which microthrombi cause delayed deficits may be via formation of infarcts.


2010 ◽  
Vol 298 (1) ◽  
pp. F187-F195 ◽  
Author(s):  
Swasti Tiwari ◽  
Lijun Li ◽  
Shahla Riazi ◽  
Veerendra K. Madala Halagappa ◽  
Carolyn M. Ecelbarger

An increase in blood pressure (BP) due to angiotensin II (ANG II) infusion or other means is associated with adaptive pressure natriuresis due to reduced sodium reabsorption primarily in proximal tubule (PT) and thick ascending limb (TAL). We tested the hypothesis that male and female mice would show differential response to ANG II infusion with regard to the regulation of the protein abundance of sodium transporters in the PT and TAL and that these responses would be modulated by aging. Young (∼3 mo) and old (∼21 mo) male and female mice were infused with ANG II at 800 ng·kg body wt−1·min−1 by osmotic minipump for 7 days or received a sham operation. ANG II increased mean arterial pressure (MAP), measured by radiotelemetry, significantly more in male mice of both ages (increased ∼30–40 mmHg), compared with females (increased ∼15–25 mmHg). On day 1, MAP was also significantly increased in old mice, relative to young ( P = 0.01). ANG II infusion was associated with a significant decline in plasma testosterone (to <30% of control male) in male mice and rise in young female mice (to 478% of control female). No sex differences were found in the upregulation of the sodium hydrogen exchanger abundance on Western blots observed with ANG II infusion or the downregulation of the sodium phosphate cotransporter; however, aging did impact on some of these changes. Male mice (especially young) also had significantly reduced levels of the TAL bumetanide-sensitive Na-K-2Cl cotransporter (to 60% of male control), while young females showed an increase (to 126% of female control) with ANG II infusion. These sex differences do not support impaired pressure natriuresis in male mice, but might reflect a greater need and attempt to mount an appropriately BP-metered natriuretic response by additional downregulation of TAL sodium reabsorption.


2006 ◽  
Vol 290 (2) ◽  
pp. F478-F485 ◽  
Author(s):  
Keiko Tsumura ◽  
Xuefei Li ◽  
Kwartarini Murdiastuti ◽  
Most. Nahid Parvin ◽  
Tetsuya Akamatsu ◽  
...  

Aquaporin-2 (AQP2) is responsible for the concentration of urine in the kidney collecting tubule under the regulation of vasopressin. The mRNA level of this water channel in polydipsic STR/N mice was extremely reduced compared with that in normal ICR mice. In male mice, reduction of the AQP2 mRNA level was not evident at 3 wk of age, at which time water intake was not increased. At 10 wk of age, however, the AQP2 mRNA level was reduced to 10% of that in control mice, whereas water intake was increased by 36%. At 44 wk, the water intake became five times that of the control ICR mice, and the AQP2 mRNA level in these polydipsic mice was only ∼5% of control. Similar changes were observed in the AQP2 protein level, suggesting that the mRNA level of AQP2 reflects the protein level of AQP2. These inverse changes in the AQP2 mRNA level and water intake were also evident in female mice. The data imply that polydipsia in STR/N mice may have affected AQP2 mRNA transcription in the kidney, resulting in reduced AQP2 expression, which would contribute to a reduction in overretention of water.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Jan Wysocki ◽  
Karla Evora ◽  
Moody Salem ◽  
Christoph Maier ◽  
Minghao Ye ◽  
...  

Many of the pathophysiological effects of angiotensin II (Ang II) are attributed to its stimulation of NADPH oxidases and the consequent production of reactive oxygen species. Female sex has generally lower cardiovascular morbidity and is also less susceptible to kidney injury than males. The basis of these phenomena is not well understood but it is possible that sex-differential regulation of oxidative stress through activation of the RAS and its key effector, Ang II, plays an important contributor role. Here we hypothesized that Ang II levels are higher in male mice and that this is associated with sex-differences in kidney levels of ACE2, an Ang II-degrading enzyme abundantly expressed in the kidney. Parameters of oxidative stress such as, NADPH oxidase activity and malondialdehyde levels (MDA) were measured in kidneys from female and age-matched male C57BL6 mice. At 40 weeks of age, NADPH oxidase activity (p<0.01) and MDA levels (p<0.05) were significantly lower in female than in male mice. Female mice had lower kidney levels of the pro-oxidant peptide, Ang II (0.94±0.19 vs. 1.66±0.17 fmol/mg total protein, p<0.05, respectively). The difference in kidney Ang II levels between females and males was also observed in the face of complete ACE2 genetic deficiency (1.08±0.16 vs 1.97±0.25 fmol/mg total protein, p<0.05, respectively). Consistent with kidney Ang II levels, urinary Ang II levels measured in urines from female WT mice were also significantly lower than in male WT mice (23.6±2.2 vs. 47.9±8.8 pg/mg creatinine, p<0.05) despite significantly higher levels of urinary ACE2 activity in male mice as compared to female mice (7.0±0.5 vs. 3.6±0.3, p<0.01, respectively). Female mice have lower basal levels of kidney oxidative stress than males and exhibit lower levels of kidney and urinary Ang II. The mechanism involved in sex differences in the levels of kidney and urine Ang II does not appear to depend on ACE2.


Sign in / Sign up

Export Citation Format

Share Document