scholarly journals Interaction of Deubiquitinase 2A-DUB/MYSM1 with DNA Repair and Replication Factors

2020 ◽  
Vol 21 (11) ◽  
pp. 3762
Author(s):  
Carsten Kroeger ◽  
Reinhild Roesler ◽  
Sebastian Wiese ◽  
Adelheid Hainzl ◽  
Martina Vanessa Gatzka

The deubiquitination of histone H2A on lysine 119 by 2A-DUB/MYSM1, BAP1, USP16, and other enzymes is required for key cellular processes, including transcriptional activation, apoptosis, and cell cycle control, during normal hematopoiesis and tissue development, and in tumor cells. Based on our finding that MYSM1 colocalizes with γH2AX foci in human peripheral blood mononuclear cells, leukemia cells, and melanoma cells upon induction of DNA double-strand breaks with topoisomerase inhibitor etoposide, we applied a mass spectrometry-based proteomics approach to identify novel 2A-DUB/MYSM1 interaction partners in DNA-damage responses. Differential display of MYSM1 binding proteins significantly enriched after exposure of 293T cells to etoposide revealed an interacting network of proteins involved in DNA damage and replication, including factors associated with poor melanoma outcome. In the context of increased DNA-damage in a variety of cell types in Mysm1-deficient mice, in bone marrow cells upon aging and in UV-exposed Mysm1-deficient skin, our current mass spectrometry data provide additional evidence for an interaction between MYSM1 and key DNA replication and repair factors, and indicate a potential function of 2A-DUB/MYSM1 in DNA repair processes.

Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3843
Author(s):  
Jeffrey R. Whiteaker ◽  
Tao Wang ◽  
Lei Zhao ◽  
Regine M. Schoenherr ◽  
Jacob J. Kennedy ◽  
...  

The ATM serine/threonine kinase (HGNC: ATM) is involved in initiation of repair of DNA double-stranded breaks, and ATM inhibitors are currently being tested as anti-cancer agents in clinical trials, where pharmacodynamic (PD) assays are crucial to help guide dose and scheduling and support mechanism of action studies. To identify and quantify PD biomarkers of ATM inhibition, we developed and analytically validated a 51-plex assay (DDR-2) quantifying protein expression and DNA damage-responsive phosphorylation. The median lower limit of quantification was 1.28 fmol, the linear range was over 3 orders of magnitude, the median inter-assay variability was 11% CV, and 86% of peptides were stable for storage prior to analysis. Use of the assay was demonstrated to quantify signaling following ionizing radiation-induced DNA damage in both immortalized lymphoblast cell lines and primary human peripheral blood mononuclear cells, identifying PD biomarkers for ATM inhibition to support preclinical and clinical studies.


2009 ◽  
Vol 103 (5) ◽  
pp. 686-695 ◽  
Author(s):  
Ruth J. Bevan ◽  
Nalini Mistry ◽  
Parul R. Patel ◽  
Eugene P. Halligan ◽  
Rosamund Dove ◽  
...  

Intracellular vitamin C acts to protect cells against oxidative stress by intercepting reactive oxygen species (ROS) and minimising DNA damage. However, rapid increases in intracellular vitamin C may induce ROS with subsequent DNA damage priming DNA repair processes. Herein, we examine the potential of vitamin C and the derivative ascorbate-2-phosphate (2-AP) to induce a nucleotide excision repair (NER) response to DNA damage in a model of peripheral blood mononuclear cells. Exposure of cells to elevated levels of vitamin C induced ROS activity, resulting in increased levels of deoxycytidine glyoxal (gdC) and 8-oxo-2′-deoxyguanosine (8-oxodG) adducts in DNA; a stress response was also induced by 2-AP, but was delayed in comparison to vitamin C. Evidence of gdC repair was also apparent. Measurement of cyclobutane thymine–thymine dimers (T < >T) in DNA and culture supernatant were included as a positive marker for NER activity; this was evidenced by a reduction in DNA and increases in culture supernatant levels of T < >T for vitamin C-treated cells. Genomics analysis fully supported these findings confirming that 2-AP, in particular, induced genes associated with stress response, cell cycle arrest, DNA repair and apoptosis, and additionally provided evidence for the involvement of vitamin C in the mobilisation of intracellular catalytic Fe.


Blood ◽  
1980 ◽  
Vol 56 (4) ◽  
pp. 633-639 ◽  
Author(s):  
AW Hamburger

Abstract Recent studies have shown that soluble factors elaborated by human T lymphocytes enhance erythroid burst formation by human peripheral blood null cells. This study demonstrates that media conditioned by a long- term T lymphocyte line augmented the growth of erythroid colonies in vitro in the presence of erythropoietin (Ep). ATCC.CCl 119 (CCRF-CEM) was derived from a patient with ALL of T-lymphoblast origin. Cells from the stocks used in these experiments maintained T-cell characteristics as determined by histochemical and rosetting techniques. Increased numbers of 16 day BFU-E were seen when Ficoll-Hypaque separated peripheral blood leukocytes were cultured in the presence of a 10% (v/v) concentration of CCL 119 conditioned medium (CM). CM increased the number of BFU-E even when Ep or fetal calf serum were not growth limiting. CM also increased the number of late BFU-E observed in cultures of nonadherent bone marrow cells. When peripheral blood mononuclear cells were depleted of E-rosetting cells, only small numbers of BFU-E grew. Addition of 119 CM increased the numbers of BFU- E in E-rosette-depleted cultures. CM from B-cell, macrophage, or other T-cell lines tested did not stimulate BFU-E growth as consistently. These studies indicate that CM obtained from ATCC.CCL 119 cells contained burst-promoting activity, one of the factors required for proliferation of early erythroid progenitors.


2019 ◽  
Vol 38 (6) ◽  
pp. 724-733 ◽  
Author(s):  
Karol Bukowski ◽  
Daniel Wysokinski ◽  
Katarzyna Mokra ◽  
Katarzyna Wozniak

Phosphorus flame retardants are a group of chemicals that are used to slow or prevent the spread of fire. These compounds have been detected in different environments including human organism. In the present study, we have investigated DNA-damaging potential and effect on DNA methylation of tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) phosphate (TCPP) in human peripheral blood mononuclear cells (PBMCs). In order to determine DNA damage and repair, the alkaline and neutral versions of the comet assay were used. The level of DNA methylation was determined with specific antibodies against methylated DNA. PBMCs were exposed to TCEP and TCPP at the concentrations in the range of 1–1000 µM for 24 h. We have observed that TCEP and TCPP induced DNA damage—DNA breaks and alkali-labile sites. All DNA damages were effectively repaired during 120-min repair incubation. The results have also shown that TCEP and TCPP decreased the level of DNA methylation in PBMCs. In the case of TCEP, this effect was observed at a very low concentration of 1 µM.


Sign in / Sign up

Export Citation Format

Share Document