scholarly journals Targeted Metabolomic Analysis of a Mucopolysaccharidosis IIIB Mouse Model Reveals an Imbalance of Branched-Chain Amino Acid and Fatty Acid Metabolism

2020 ◽  
Vol 21 (12) ◽  
pp. 4211 ◽  
Author(s):  
Valeria De Pasquale ◽  
Marianna Caterino ◽  
Michele Costanzo ◽  
Roberta Fedele ◽  
Margherita Ruoppolo ◽  
...  

Mucopolysaccharidoses (MPSs) are inherited disorders of the glycosaminoglycan (GAG) metabolism. The defective digestion of GAGs within the intralysosomal compartment of affected patients leads to a broad spectrum of clinical manifestations ranging from cardiovascular disease to neurological impairment. The molecular mechanisms underlying the progression of the disease downstream of the genetic mutation of genes encoding for lysosomal enzymes still remain unclear. Here, we applied a targeted metabolomic approach to a mouse model of PS IIIB, using a platform dedicated to the diagnosis of inherited metabolic disorders, in order to identify amino acid and fatty acid metabolic pathway alterations or the manifestations of other metabolic phenotypes. Our analysis highlighted an increase in the levels of branched-chain amino acids (BCAAs: Val, Ile, and Leu), aromatic amino acids (Tyr and Phe), free carnitine, and acylcarnitines in the liver and heart tissues of MPS IIIB mice as compared to the wild type (WT). Moreover, Ala, Met, Glu, Gly, Arg, Orn, and Cit amino acids were also found upregulated in the liver of MPS IIIB mice. These findings show a specific impairment of the BCAA and fatty acid catabolism in the heart of MPS IIIB mice. In the liver of affected mice, the glucose-alanine cycle and urea cycle resulted in being altered alongside a deregulation of the BCAA metabolism. Thus, our data demonstrate that an accumulation of BCAAs occurs secondary to lysosomal GAG storage, in both the liver and the heart of MPS IIIB mice. Since BCAAs regulate the biogenesis of lysosomes and autophagy mechanisms through mTOR signaling, impacting on lipid metabolism, this condition might contribute to the progression of the MPS IIIB disease.

2016 ◽  
Vol 19 (2) ◽  
pp. 168 ◽  
Author(s):  
Benny Manulang ◽  
Sri Purwaningsih ◽  
Azrifitria Azrifitria

Dolabella auricularia are found in the waters of Indo - Pacific and has active compound in health, which until now is still limited information about nutritional content from sea hare. The aim of this research were to determine morphometric and chemical characteristic D. auricularia which includes the proximate, amino acids, fatty acids and minerals. The composition of fatty acid were measured by gas chromatography (GC), amino acids were measured by high performanced liquid chromatography (HPLC), and mineral was measured by atomic absorption spectrophotometer (AAS). The sea hare contained 9 essential amino acids and 6 non essential amino acids. The highest essential amino acid was arginine (1.61%) while the highest non essential amino acids was glycine (3.02%). Sea hare contained 26 fatty acids such as saturated fatty acids 5.33%, monounsaturated fatty acids 2.11% and polyunsaturated fatty acids 4.10%. The high mineral was calcium 68100 mg/kg.


2011 ◽  
Vol 55 (4) ◽  
pp. 541-552 ◽  
Author(s):  
Aldina Venerosi ◽  
Alberto Martire ◽  
Angela Rungi ◽  
Massimo Pieri ◽  
Antonella Ferrante ◽  
...  

2002 ◽  
Vol 184 (15) ◽  
pp. 4071-4080 ◽  
Author(s):  
A. H. F. Hosie ◽  
D. Allaway ◽  
C. S. Galloway ◽  
H. A. Dunsby ◽  
P. S. Poole

ABSTRACT Amino acid uptake by Rhizobium leguminosarum is dominated by two ABC transporters, the general amino acid permease (Aap) and the branched-chain amino acid permease (BraRl). Characterization of the solute specificity of BraRl shows it to be the second general amino acid permease of R. leguminosarum. Although BraRl has high sequence identity to members of the family of hydrophobic amino acid transporters (HAAT), it transports a broad range of solutes, including acidic and basic polar amino acids (l-glutamate, l-arginine, and l-histidine), in addition to neutral amino acids (l-alanine and l-leucine). While amino and carboxyl groups are required for transport, solutes do not have to be α-amino acids. Consistent with this, BraRl is the first ABC transporter to be shown to transport γ-aminobutyric acid (GABA). All previously identified bacterial GABA transporters are secondary carriers of the amino acid-polyamine-organocation (APC) superfamily. Also, transport by BraRl does not appear to be stereospecific as d amino acids cause significant inhibition of uptake of l-glutamate and l-leucine. Unlike all other solutes tested, l-alanine uptake is not dependent on solute binding protein BraCRl. Therefore, a second, unidentified solute binding protein may interact with the BraDEFGRl membrane complex during l-alanine uptake. Overall, the data indicate that BraRl is a general amino acid permease of the HAAT family. Furthermore, BraRl has the broadest solute specificity of any characterized bacterial amino acid transporter.


Food Research ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 60-64
Author(s):  
Fitri ◽  
A. Laga ◽  
Z. Dwyana ◽  
A.B. Tawali

The processing carried out on coffee beans such as fermentation and roasting can affect the contents of amino and fatty acids of coffee beans. This study aimed to determine the amount of amino acid and fatty acid content in Luwak coffee bean during processing. The amino acids of coffee were analyzed using HPLC, while fatty acids of coffee were analyzed using GC-MS. The results showed a change in total amino acid content in raw coffee bean (3.04%), green bean coffee (6.93%), and roasted coffee (6.83%). The total fatty acid of raw coffee bean (1199.86 mg/100 g), green bean coffee (3147.56 mg/100 g), and roasted coffee (6282.4 mg/100 g) also experienced significant changes


2021 ◽  
pp. 153537022110605
Author(s):  
Li Wang ◽  
Wen Hua Zhong ◽  
Dan Yang Liu ◽  
Hai Qing Shen ◽  
Zhen Juan He

To assess the amino acid and fatty acid metabolite patterns between infants with and without bronchopulmonary dysplasia in different nutritional stages after birth and identify metabolic indicators of bronchopulmonary dysplasia. This was an observational cohort of preterm infants born at a gestational age ≤32 + 6 weeks and with a body weight ≤2000 g. Amino acid and carnitine profiles were measured in dried blood spots (DBSs) during the early nutrition transitional phase using tandem mass spectrometry. Bronchopulmonary dysplasia was defined as oxygen dependence at 36 weeks of postmenstrual age or 28 days after birth. Metabolomic analysis was employed to define metabolites with significant differences, map significant metabolites into pathways, and identify metabolic indicators of bronchopulmonary dysplasia. We evaluated 45 neonates with and 40 without bronchopulmonary dysplasia. Four amino acids and three carnitines showed differences between the groups. Three carnitines (C0, C2, and C6:1) were high in the bronchopulmonary dysplasia group mostly; conversely, all four amino acids (threonine, arginine, methionine, and glutamine (Gln)) were low in the bronchopulmonary dysplasia group. Pathway analysis of these metabolites revealed two pathways with significant changes (p < 0.05). ROC analysis showed Gln/C6:1 at total parenteral nutrition phase had both 80% sensitivity and specificity for predicting the development of bronchopulmonary dysplasia, with an area under the curve of 0.81 (95% confidence interval 0.71–0.89). Amino acid and fatty acid metabolite profiles changed in infants with bronchopulmonary dysplasia after birth during the nutrition transitional period, suggesting that metabolic dysregulation may participate in the development of bronchopulmonary dysplasia. Our findings demonstrate that metabolic indicators are promising for forecasting the occurrence of bronchopulmonary dysplasia among preterm neonates.


1982 ◽  
Vol 152 (1) ◽  
pp. 246-254
Author(s):  
Caroline S. Harwood ◽  
Ercole Canale-Parola

Spirochete MA-2, which is anaerobic, ferments glucose, forming acetate as a major product. The spirochete also ferments (but does not utilize as growth substrates) small amounts of l -leucine, l -isoleucine, and l -valine, forming the branched-chain fatty acids isovalerate, 2-methylbutyrate, and isobutyrate, respectively, as end products. Energy generated through the fermentation of these amino acids is utilized to prolong cell survival under conditions of growth substrate starvation. A branched-chain fatty acid kinase and two acetate kinase isozymes were resolved from spirochete MA-2 cell extracts. Kinase activity was followed by measuring the formation of acyl phosphate from fatty acid and ATP. The branched-chain fatty acid kinase was active with isobutyrate, 2-methylbutyrate, isovalerate, butyrate, valerate, or propionate as a substrate but not with acetate as a substrate. The acetate kinase isozymes were active with acetate and propionate as substrates but not with longer-chain fatty acids as substrates. The acetate kinase isozymes and the branched-chain fatty acid kinase differed in nucleoside triphosphate and cation specificities. Each acetate kinase isozyme had an apparent molecular weight of approximately 125,000, whereas the branched-chain fatty acid kinase had a molecular weight of approximately 76,000. These results show that spirochete MA-2 synthesizes a branched-chain fatty acid kinase specific for leucine, isoleucine, and valine fermentation. It is likely that a phosphate branched-chain amino acids is also synthesized by spirochete MA-2. Thus, in spirochete MA-2, physiological mechanisms have evolved which serve specifically to generate maintenance energy from branched-chain amino acids.


Sign in / Sign up

Export Citation Format

Share Document