scholarly journals WNT Signaling in Melanoma

2020 ◽  
Vol 21 (14) ◽  
pp. 4852 ◽  
Author(s):  
Anna Gajos-Michniewicz ◽  
Malgorzata Czyz

WNT-signaling controls important cellular processes throughout embryonic development and adult life, so any deregulation of this signaling can result in a wide range of pathologies, including cancer. WNT-signaling is classified into two categories: β-catenin-dependent signaling (canonical pathway) and β-catenin-independent signaling (non-canonical pathway), the latter can be further divided into WNT/planar cell polarity (PCP) and calcium pathways. WNT ligands are considered as unique directional growth factors that contribute to both cell proliferation and polarity. Origin of cancer can be diverse and therefore tissue-specific differences can be found in WNT-signaling between cancers, including specific mutations contributing to cancer development. This review focuses on the role of the WNT-signaling pathway in melanoma. The current view on the role of WNT-signaling in cancer immunity as well as a short summary of WNT pathway-related drugs under investigation are also provided.

Author(s):  
Joyce J.S. Yu ◽  
Aude Maugarny-Calès ◽  
Stéphane Pelletier ◽  
Cyrille Alexandre ◽  
Yohanns Bellaiche ◽  
...  

SummaryPlanar cell polarity (PCP) organizes the orientation of cellular protrusions and migratory activity within the tissue plane. PCP establishment involves the subcellular polarization of core PCP components. It has been suggested Wnt gradients could provide a global cue that coordinates local PCP with tissue axes. Here we dissect the role of Wnt ligands in the orientation of hairs of Drosophila wings, an established system for study of PCP. We found that PCP was normal in quintuple mutant wings that rely solely on membrane-tethered Wingless for Wnt signaling, suggesting that a Wnt gradient is not required. We then used a nanobody-based approach to trap Wntless in the endoplasmic reticulum, and hence prevent all Wnt secretion, specifically during the period of PCP establishment. PCP was still established. We conclude that, even though Wnt ligands could contribute to PCP, they are not essential, and another global cue must exist for tissue-wide polarization.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 826 ◽  
Author(s):  
Li Ng ◽  
Prameet Kaur ◽  
Nawat Bunnag ◽  
Jahnavi Suresh ◽  
Isabelle Sung ◽  
...  

Developmental signaling pathways control a vast array of biological processes during embryogenesis and in adult life. The WNT pathway was discovered simultaneously in cancer and development. Recent advances have expanded the role of WNT to a wide range of pathologies in humans. Here, we discuss the WNT pathway and its role in human disease and some of the advances in WNT-related treatments.


2018 ◽  
Author(s):  
Vera Bandmann ◽  
Ann Schirin Mirsanaye ◽  
Johanna Schäfer ◽  
Gerhard Thiel ◽  
Thomas Holstein ◽  
...  

AbstractReceptor-mediated endocytosis is an essential process in signaling pathways for an activation of intracellular signaling cascades. One example is the Wnt signaling pathway, which seems to depend on endocytosis of the ligand-receptor complex for initiation of Wnt signal transduction. So far, the role of different endocytic pathways in Wnt signaling, the molecular players and the kinetics of this process are unclear. Here, we monitor endocytosis in Wnt3a and Wnt5a mediated signaling by membrane capacitance recordings of HEK293 cells. Our measurements revealed a fast and substantial increase in the number of endocytic vesicles. This endocytotic activity is specifically elicited by extracellular Wnt ligands; it starts immediately upon ligand binding and ceases over a period of ten minutes. By using specific inhibitors, we can dissect Wnt induced endocytosis into two independent pathways, where canonical Wnt3a is taken up mainly by clathrin-independent endocytosis and Wnt5a exclusively by clathrin-mediated endocytosis.


2020 ◽  
Vol 10 ◽  
Author(s):  
Michela Frenquelli ◽  
Giovanni Tonon

The role of the WNT signaling pathway in key cellular processes, such as cell proliferation, differentiation and migration is well documented. WNT signaling cascade is initiated by the interaction of WNT ligands with receptors belonging to the Frizzled family, and/or the ROR1/ROR2 and RYK families. The downstream signaling cascade results in the activation of the canonical β-catenin dependent pathway, ultimately leading to transcriptional control of cell proliferation, or the non-canonical pathway, mainly acting on cell migration and cell polarity. The high level of expression of both WNT ligands and WNT receptors in cancer cells and in the surrounding microenvironment suggests that WNT may represent a central conduit of interactions between tumor cells and microenviroment. In this review we will focus on WNT pathways deregulation in hematological cancers, both at the ligand and receptor levels. We will review available literature regarding both the classical β-catenin dependent pathway as well as the non-canonical pathway, with particular emphasis on the possible exploitation of WNT aberrant activation as a therapeutic target, a notion supported by preclinical data.


Author(s):  
Samoylova A.V. ◽  
Snimshchikova I.A. ◽  
Plotnikova M.O. ◽  
Yakushkina N.Y.

Alopecia is a common pathology among the active population, which leads not only to cosmetic defects, but also to the development of somatic diseases against the background of traumatic effects and chronic stress. The pathogenetic mechanisms of hair follicle formation are complex and diverse, since numerous factors, including the components of the Wnt signaling pathway, have an effect on its morphogenesis, the study of which is the subject of this study. The search for possible early markers of the development of alopecia led to interest in the study of the main morphogenic proteins of WNT - the signaling pathway (one of the intracellular signaling pathways, which control the development of blood vessels, as well as the growth and division of hair follicle cells) sclerostin and β-catenin among patients with androgenic and alopecia areata. The article presents data on the quantitative content of β-catenin and sclerostin in the blood serum in patients with androgenic and alopecia areata. Their possible pathways of complex interaction and influence on the morphogenesis of the hair follicle and the activity of the Wnt-signaling pathway have been analyzed, and the relationship between changes in the level of morphogenic proteins of the WNT-signaling pathway with sex and the course of the disease has been described. Establishment of the prognostic role of morphogenic proteins of the WNT signaling pathway in androgenic and alopecia areata will allow not only identify the personal risk of disease progression and to determine approaches to targeted therapy, but to develop and introduce updated diagnostic screening into dermatological practice.


2018 ◽  
Vol 48 (2) ◽  
pp. 419-432 ◽  
Author(s):  
Yuanyuan Zhao ◽  
Leilei Tao ◽  
Jun Yi ◽  
Haizhu Song ◽  
Longbang Chen

Radioresistance is a major obstacle in radiotherapy for cancer, and strategies are needed to overcome this problem. Currently, radiotherapy combined with targeted therapy such as inhibitors of phosphoinosotide 3-kinase/Akt and epidermal growth factor receptor signaling have become the focus of studies on radiosensitization. Apart from these two signaling pathways, which promote radioresistance, deregulation of Wnt signaling is also associated with the radioresistance of multiple cancers. Wnts, as important messengers in the tumor microenvironment, are involved in cancer progression mainly via canonical Wnt signaling. Their role in promoting DNA damage repair and inhibiting apoptosis facilitates cancer resistance to radiation. Thus, it seems reasonable to target Wnt signaling as a method for overcoming radioresistance. Many small-molecule inhibitors that target the Wnt signaling pathway have been identified and shown to promote radiosensitization. Therefore, a Wnt signaling inhibitor may help to overcome radioresistance in cancer therapy.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kaylee Bundy ◽  
Jada Boone ◽  
C. LaShan Simpson

Cardiovascular disease is a worldwide epidemic and considered the leading cause of death globally. Due to its high mortality rates, it is imperative to study the underlying causes and mechanisms of the disease. Vascular calcification, or the buildup of hydroxyapatite within the arterial wall, is one of the greatest contributors to cardiovascular disease. Medial vascular calcification is a predictor of cardiovascular events such as, but not limited to, hypertension, stiffness, and even heart failure. Vascular smooth muscle cells (VSMCs), which line the arterial wall and function to maintain blood pressure, are hypothesized to undergo a phenotypic switch into bone-forming cells during calcification, mimicking the manner by which mesenchymal stem cells differentiate into osteoblast cells throughout osteogenesis. RunX2, a transcription factor necessary for osteoblast differentiation and a target gene of the Wnt signaling pathway, has also shown to be upregulated when calcification is present, implicating that the Wnt cascade may be a key player in the transdifferentiation of VSMCs. It is important to note that the phenotypic switch of VSMCs from a healthy, contractile state to a proliferative, synthetic state is necessary in response to the vascular injury surrounding calcification. The lingering question, however, is if VSMCs acquire this synthetic phenotype through the Wnt pathway, how and why does this signaling occur? This review seeks to highlight the potential role of the canonical Wnt signaling pathway within vascular calcification based on several studies and further discuss the Wnt ligands that specifically aid in VSMC transdifferentiation.


Sign in / Sign up

Export Citation Format

Share Document