scholarly journals Recent Progress in the Identification of Aptamers Against Bacterial Origins and Their Diagnostic Applications

2020 ◽  
Vol 21 (14) ◽  
pp. 5074 ◽  
Author(s):  
Nevina E. Trunzo ◽  
Ka Lok Hong

Aptamers have gained an increasing role as the molecular recognition element (MRE) in diagnostic assay development, since their first conception thirty years ago. The process to screen for nucleic acid-based binding elements (aptamers) was first described in 1990 by the Gold Laboratory. In the last three decades, many aptamers have been identified for a wide array of targets. In particular, the number of reports on investigating single-stranded DNA (ssDNA) aptamer applications in biosensing and diagnostic platforms have increased significantly in recent years. This review article summarizes the recent (2015 to 2020) progress of ssDNA aptamer research on bacteria, proteins, and lipids of bacterial origins that have implications for human infections. The basic process of aptamer selection, the principles of aptamer-based biosensors, and future perspectives will also be discussed.

2020 ◽  
Vol 27 (31) ◽  
pp. 5189-5212 ◽  
Author(s):  
Li-Juan Yi ◽  
Jun-Feng Li ◽  
Ming-Guo Ma ◽  
Ying-Jie Zhu

In the past several decades, various types of nanostructured biomaterials have been developed. These nanostructured biomaterials have promising applications in biomedical fields such as bone repair, tissue engineering, drug delivery, gene delivery, antibacterial agents, and bioimaging. Nanostructured biomaterials with high biocompatibility, including calcium phosphate, hydroxyapatite, and calcium silicate, are ideal candidates for drug delivery. This review article is not intended to offer a comprehensive review of the nanostructured biomaterials and their application in drug delivery but rather presents a brief summary of the recent progress in this field. Our recent endeavors in the research of nanostructured biomaterials for drug delivery are also summarized. Special attention is paid to the synthesis and properties of nanostructured biomaterials and their application in drug delivery with the use of typical examples. Finally, we discuss the problems and future perspectives of nanostructured biomaterials in the drug delivery field.


2016 ◽  
Vol 9 (9) ◽  
pp. 2682-2719 ◽  
Author(s):  
Alessandro Cannavale ◽  
Pierluigi Cossari ◽  
Giles E. Eperon ◽  
Silvia Colella ◽  
Francesco Fiorito ◽  
...  

This review article explores the historical development and the recent progress of photoelectrochromic devices (PECDs), evaluating on the bases of components evolution their future perspectives.


2018 ◽  
Vol 19 (8) ◽  
pp. 631-643 ◽  
Author(s):  
Fazlurrahman Khan ◽  
Mohammad M. Khan ◽  
Young-Mog Kim

2019 ◽  
Vol 7 (16) ◽  
pp. 9432-9446 ◽  
Author(s):  
Zhixin Xu ◽  
Jun Yang ◽  
Hongping Li ◽  
Yanna Nuli ◽  
Jiulin Wang

Recent progress in electrolytes from the liquid to the solid state for Si-based anodes is comprehensively summarized in this review article.


2021 ◽  
Vol 22 (6) ◽  
pp. 3059
Author(s):  
Corrado Pelaia ◽  
Cecilia Calabrese ◽  
Eugenio Garofalo ◽  
Andrea Bruni ◽  
Alessandro Vatrella ◽  
...  

Among patients suffering from coronavirus disease 2019 (COVID-19) syndrome, one of the worst possible scenarios is represented by the critical lung damage caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-induced cytokine storm, responsible for a potentially very dangerous hyperinflammatory condition. Within such a context, interleukin-6 (IL-6) plays a key pathogenic role, thus being a suitable therapeutic target. Indeed, the IL-6-receptor antagonist tocilizumab, already approved for treatment of refractory rheumatoid arthritis, is often used to treat patients with severe COVID-19 symptoms and lung involvement. Therefore, the aim of this review article is to focus on the rationale of tocilizumab utilization in the SARS-CoV-2-triggered cytokine storm, as well as to discuss current evidence and future perspectives, especially with regard to ongoing trials referring to the evaluation of tocilizumab’s therapeutic effects in patients with life-threatening SARS-CoV-2 infection.


2021 ◽  
Vol 11 (9) ◽  
pp. 4242
Author(s):  
Manggar Arum Aristri ◽  
Muhammad Adly Rahandi Lubis ◽  
Sumit Manohar Yadav ◽  
Petar Antov ◽  
Antonios N. Papadopoulos ◽  
...  

This review article aims to summarize the potential of using renewable natural resources, such as lignin and tannin, in the preparation of NIPUs for wood adhesives. Polyurethanes (PUs) are extremely versatile polymeric materials, which have been widely used in numerous applications, e.g., packaging, footwear, construction, the automotive industry, the lighting industry, insulation panels, bedding, furniture, metallurgy, sealants, coatings, foams, and wood adhesives. The isocyanate-based PUs exhibit strong adhesion properties, excellent flexibility, and durability, but they lack renewability. Therefore, this study focused on the development of non-isocyanate polyurethane lignin and tannin resins for wood adhesives. PUs are commercially synthesized using polyols and polyisocyanates. Isocyanates are toxic, costly, and not renewable; thus, a search of suitable alternatives in the synthesis of polyurethane resins is needed. The reaction with diamine compounds could result in NIPUs based on lignin and tannin. The research on bio-based components for PU synthesis confirmed that they have good characteristics as an alternative for the petroleum-based adhesives. The advantages of improved strength, low curing temperatures, shorter pressing times, and isocyanate-free properties were demonstrated by lignin- and tannin-based NIPUs. The elimination of isocyanate, associated with environmental and human health hazards, NIPU synthesis, and its properties and applications, including wood adhesives, are reported comprehensively in this paper. The future perspectives of NIPUs’ production and application were also outlined.


Sign in / Sign up

Export Citation Format

Share Document