scholarly journals Molecular Mechanisms Underlying Hepatocellular Carcinoma Induction by Aberrant NRF2 Activation-Mediated Transcription Networks: Interaction of NRF2-KEAP1 Controls the Fate of Hepatocarcinogenesis

2020 ◽  
Vol 21 (15) ◽  
pp. 5378 ◽  
Author(s):  
Effi Haque ◽  
M. Rezaul Karim ◽  
Aamir Salam Teeli ◽  
Magdalena Śmiech ◽  
Paweł Leszczynski ◽  
...  

NF-E2-related factor 2 (NRF2) is a basic leucine zipper transcription factor, a master regulator of redox homeostasis regulating a variety of genes for antioxidant and detoxification enzymes. NRF2 was, therefore, initially thought to protect the liver from oxidative stress. Recent studies, however, have revealed that mutations in NRF2 cause aberrant accumulation of NRF2 in the nucleus and exert the upregulation of NRF2 target genes. Moreover, among all molecular changes in hepatocellular carcinoma (HCC), NRF2 activation has been revealed as a more prominent pathway contributing to the progression of precancerous lesions to malignancy. Nevertheless, how its activation leads to poor prognosis in HCC patients remains unclear. In this review, we provide an overview of how aberrant activation of NRF2 triggers HCC development. We also summarize the emerging roles of other NRF family members in liver cancer development.

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yang Bai ◽  
Xiaolu Wang ◽  
Song Zhao ◽  
Chunye Ma ◽  
Jiuwei Cui ◽  
...  

Cardiovascular disease (CVD) causes an unparalleled proportion of the global burden of disease and will remain the main cause of mortality for the near future. Oxidative stress plays a major role in the pathophysiology of cardiac disorders. Several studies have highlighted the cardinal role played by the overproduction of reactive oxygen or nitrogen species in the pathogenesis of ischemic myocardial damage and consequent cardiac dysfunction. Isothiocyanates (ITC) are sulfur-containing compounds that are broadly distributed among cruciferous vegetables. Sulforaphane (SFN) is an ITC shown to possess anticancer activities by bothin vivoand epidemiological studies. Recent data have indicated that the beneficial effects of SFN in CVD are due to its antioxidant and anti-inflammatory properties. SFN activates NF-E2-related factor 2 (Nrf2), a basic leucine zipper transcription factor that serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than a hundred cytoprotective proteins, including antioxidants and phase II detoxifying enzymes. This review will summarize the evidence from clinical studies and animal experiments relating to the potential mechanisms by which SFN modulates Nrf2 activation and protects against CVD.


2013 ◽  
Vol 4 (11) ◽  
pp. e921-e921 ◽  
Author(s):  
S Tanigawa ◽  
C H Lee ◽  
C S Lin ◽  
C C Ku ◽  
H Hasegawa ◽  
...  

Abstract Oxidative stress and reactive oxygen species (ROS) are associated with diseases such as cancer, cardiovascular complications, inflammation and neurodegeneration. Cellular defense systems must work constantly to control ROS levels and to prevent their accumulation. We report here that the Jun dimerization protein 2 (JDP2) has a critical role as a cofactor for transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2) and small Maf protein family K (MafK) in the regulation of the antioxidant-responsive element (ARE) and production of ROS. Chromatin immunoprecipitation–quantitative PCR (qPCR), electrophoresis mobility shift and ARE-driven reporter assays were carried out to examine the role of JDP2 in ROS production. JDP2 bound directly to the ARE core sequence, associated with Nrf2 and MafK (Nrf2–MafK) via basic leucine zipper domains, and increased DNA-binding activity of the Nrf2–MafK complex to the ARE and the transcription of ARE-dependent genes. In mouse embryonic fibroblasts from Jdp2-knockout (Jdp2 KO) mice, the coordinate transcriptional activation of several ARE-containing genes and the ability of Nrf2 to activate expression of target genes were impaired. Moreover, intracellular accumulation of ROS and increased thickness of the epidermis were detected in Jdp2 KO mice in response to oxidative stress-inducing reagents. These data suggest that JDP2 is required to protect against intracellular oxidation, ROS activation and DNA oxidation. qPCR demonstrated that several Nrf2 target genes such as heme oxygenase-1, glutamate–cysteine ligase catalytic and modifier subunits, the notch receptor ligand jagged 1 and NAD(P)H dehydrogenase quinone 1 are also dependent on JDP2 for full expression. Taken together, these results suggest that JDP2 is an integral component of the Nrf2–MafK complex and that it modulates antioxidant and detoxification programs by acting via the ARE.


2020 ◽  
Author(s):  
Qiujie Wang ◽  
Bin Cheng ◽  
Qiang Xue ◽  
Qingzhu Gao ◽  
Ailong Huang ◽  
...  

AbstractIncreasing evidence supports that ferroptosis plays an important role in tumor growth inhibition. Sorafenib, originally identified as an inhibitor of multiple oncogenic kinases, has been shown to induce ferroptosis in hepatocellular carcinoma (HCC). However, some hepatoma cell lines are less sensitive to sorafenib-induced ferroptotic cell death. Glutathione S-transferase zeta 1 (GSTZ1), an enzyme in the catabolism of phenylalanine, has been found to negatively regulate the master regulator of cellular redox homeostasis nuclear factor erythroid 2-related factor 2 (NRF2). This study aimed to investigate the role of GSTZ1 in sorafenib-induced ferroptosis in HCC cell lines and determine the involved molecular mechanisms. Mechanistically, GSTZ1 depletion enhanced the activation of the NRF2 pathway and increased the glutathione peroxidase 4 (GPX4) level, thereby suppressing sorafenib-induced ferroptosis. The combination of sorafenib and RSL3, a GPX4 inhibitor, significantly inhibited GSTZ1 deficient cell viability and promoted ferroptosis, accompanied with ectopic increases of iron and lipid peroxides. An in vivo experiment showed that the combination of sorafenib and RSL3 had a synergic therapeutic effect on HCC progression in Gstz1−/− mice. In conclusion, GSTZ1 was significantly downregulated in sorafenib resistant hepatoma cells. GSTZ1 enhanced sorafenib-induced ferroptosis by inhibiting the NRF2/GPX4 axis in HCC cells. GSTZ1 deficiency was resistant to sorafenib-induced ferroptosis and is, therefore, a potential therapeutic approach for treating HCC by synergizing sorafenib and RSL3 to induce ferroptosis.


Open Biology ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 200105 ◽  
Author(s):  
Sharadha Dayalan Naidu ◽  
Albena T. Dinkova-Kostova

Redox imbalance and persistent inflammation are the underlying causes of most chronic diseases. Mammalian cells have evolved elaborate mechanisms for restoring redox homeostasis and resolving acute inflammatory responses. One prominent mechanism is that of inducing the expression of antioxidant, anti-inflammatory and other cytoprotective proteins, while also suppressing the production of pro-inflammatory mediators, through the activation of transcription factor nuclear factor-erythroid 2 p45-related factor 2 (NRF2). At homeostatic conditions, NRF2 is a short-lived protein, which avidly binds to Kelch-like ECH-associated protein 1 (KEAP1). KEAP1 functions as (i) a substrate adaptor for a Cullin 3 (CUL3)-based E3 ubiquitin ligase that targets NRF2 for ubiquitination and proteasomal degradation, and (ii) a cysteine-based sensor for a myriad of physiological and pharmacological NRF2 activators. Here, we review the intricate molecular mechanisms by which KEAP1 senses electrophiles and oxidants. Chemical modification of specific cysteine sensors of KEAP1 results in loss of NRF2-repressor function and alterations in the expression of NRF2-target genes that encode large networks of diverse proteins, which collectively restore redox balance and resolve inflammation, thus ensuring a comprehensive cytoprotection. We focus on the cyclic cyanoenones, the most potent NRF2 activators, some of which are currently in clinical trials for various pathologies characterized by redox imbalance and inflammation.


Cancers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 481 ◽  
Author(s):  
Azhwar Raghunath ◽  
Kiruthika Sundarraj ◽  
Frank Arfuso ◽  
Gautam Sethi ◽  
Ekambaram Perumal

The liver executes versatile functions and is the chief organ for metabolism of toxicants/xenobiotics. Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and the third foremost cause of cancer death worldwide. Oxidative stress is a key factor related with the development and progression of HCC. Nuclear factor erythroid 2 [NF-E2]-related factor 2 (Nrf2) is a cytosolic transcription factor, which regulates redox homeostasis by activating the expression of an array of antioxidant response element-dependent genes. Nrf2 displays conflicting roles in normal, healthy liver and HCC; in the former, Nrf2 offers beneficial effects, whereas in the latter it causes detrimental effects favouring the proliferation and survival of HCC. Sustained Nrf2 activation has been observed in HCC and facilitates its progression and aggressiveness. This review summarizes the role and mechanism(s) of action of Nrf2 dysregulation in HCC and therapeutic options that can be employed to modulate this transcription factor.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Qiujie Wang ◽  
Cheng Bin ◽  
Qiang Xue ◽  
Qingzhu Gao ◽  
Ailong Huang ◽  
...  

AbstractIncreasing evidence supports that ferroptosis plays an important role in tumor growth inhibition. Sorafenib, originally identified as an inhibitor of multiple oncogenic kinases, has been shown to induce ferroptosis in hepatocellular carcinoma (HCC). However, some hepatoma cell lines are less sensitive to sorafenib-induced ferroptotic cell death. Glutathione S-transferase zeta 1 (GSTZ1), an enzyme in the catabolism of phenylalanine, suppresses the expression of the master regulator of cellular redox homeostasis nuclear factor erythroid 2-related factor 2 (NRF2). This study aimed to investigate the role and underlying molecular mechanisms of GSTZ1 in sorafenib-induced ferroptosis in HCC. GSTZ1 was significantly downregulated in sorafenib-resistant hepatoma cells. Mechanistically, GSTZ1 depletion enhanced the activation of the NRF2 pathway and increased the glutathione peroxidase 4 (GPX4) level, thereby suppressing sorafenib-induced ferroptosis. The combination of sorafenib and RSL3, a GPX4 inhibitor, significantly inhibited GSTZ1-deficient cell viability and promoted ferroptosis and increased ectopic iron and lipid peroxides. In vivo, the combination of sorafenib and RSL3 had a synergic therapeutic effect on HCC progression in Gstz1−/− mice. In conclusion, this finding demonstrates that GSTZ1 enhanced sorafenib-induced ferroptosis by inhibiting the NRF2/GPX4 axis in HCC cells. Combination therapy of sorafenib and GPX4 inhibitor RSL3 may be a promising strategy in HCC treatment.


2020 ◽  
Vol 318 (3) ◽  
pp. G419-G427 ◽  
Author(s):  
Tatsuhide Nabeshima ◽  
Shin Hamada ◽  
Keiko Taguchi ◽  
Yu Tanaka ◽  
Ryotaro Matsumoto ◽  
...  

The activation of the Kelch-like ECH-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) pathway contributes to cancer progression in addition to oxidative stress responses. Loss-of-function Keap1 mutations were reported to activate Nrf2, leading to cancer progression. We examined the effects of Keap1 deletion in a cholangiocarcinoma mouse model using a mutant K-ras/ p53 mouse. Introduction of the Keap1 deletion into liver-specific mutant K-ras/ p53 expression resulted in the formation of invasive cholangiocarcinoma. Comprehensive analyses of the gene expression profiles identified broad upregulation of Nrf2-target genes such as Nqo1 and Gstm1 in the Keap1-deleted mutant K-ras/ p53 expressing livers, accompanied by upregulation of cholangiocyte-related genes. Among these genes, the transcriptional factor Sox9 was highly expressed in the dysplastic bile duct. The Keap-Nrf2-Sox9 axis might serve as a novel therapeutic target for cholangiocarcinoma. NEW & NOTEWORTHY The Keap1-Nrf2 system has a wide variety of effects in addition to the oxidative stress response in cancer cells. Addition of the liver-specific Keap1 deletion to mice harboring mutant K-ras and p53 accelerated cholangiocarcinoma formation, together with the hallmarks of Nrf2 activation. This process involved the expansion of Sox9-positive cells, indicating increased differentiation toward the cholangiocyte phenotype.


2004 ◽  
Vol 380 (3) ◽  
pp. 695-703 ◽  
Author(s):  
Yongyi BI ◽  
Richard D. PALMITER ◽  
Kristi M. WOOD ◽  
Qiang MA

Phenolic antioxidants, such as tBHQ [2,5-di-(t-butyl)-1,4-hydroquinone], induce Mt1 (metallothionein 1) gene expression and accumulation of MT protein. Induction of Mt1 mRNA does not depend on protein synthesis, and correlates with oxidation–reduction functions of the antioxidants. In the present study, we analysed the biochemical pathway of the induction. Induction depends on the presence of MTF-1 (metal-activated transcription factor 1), a transcription factor that is required for metal-induced transcription of Mt1, but does not require nuclear factor erythroid 2-related factor 2, a tBHQ-activated CNC bZip (cap ‘n’ collar basic leucine zipper) protein, that is responsible for regulating genes encoding phase II drug-metabolizing enzymes. Moreover, tBHQ induces the expression of MRE-βGeo, a reporter gene driven by five metal response elements that constitute an optimal MTF-1 binding site. Reconstitution of Mtf1-null cells with MTF-1 restores induction by both zinc and tBHQ. Unlike activation of phase II genes by tBHQ, induction of Mt1 expression does not occur in the presence of EDTA, when cells are cultured in zinc-depleted medium, or in cells with reduced intracellular ‘free’ zinc due to overexpression of ZnT1, a zinc-efflux transporter, indicating that induction requires zinc. In addition, fluorescence imaging reveals that tBHQ increases cytoplasmic free zinc concentration by mobilizing intracellular zinc pools. These findings establish that phenolic antioxidants activate Mt1 transcription by a zinc-dependent mechanism, which involves MTF-1 binding to metal regulator elements in the Mt1 gene promoter.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2149
Author(s):  
Nkulu Kabange Rolly ◽  
Byung-Wook Yun

Nitrogen (N) is an essential macronutrient, which contributes substantially to the growth and development of plants. In the soil, nitrate (NO3) is the predominant form of N available to the plant and its acquisition by the plant involves several NO3 transporters; however, the mechanism underlying their involvement in the adaptive response under abiotic stress is poorly understood. Initially, we performed an in silico analysis to identify potential binding sites for the basic leucine zipper 62 transcription factor (AtbZIP62 TF) in the promoter of the target genes, and constructed their protein–protein interaction networks. Rather than AtbZIP62, results revealed the presence of cis-regulatory elements specific to two other bZIP TFs, AtbZIP18 and 69. A recent report showed that AtbZIP62 TF negatively regulated AtbZIP18 and AtbZIP69. Therefore, we investigated the transcriptional regulation of AtNPF6.2/NRT1.4 (low-affinity NO3 transporter), AtNPF6.3/NRT1.1 (dual-affinity NO3 transporter), AtNRT2.1 and AtNRT2.2 (high-affinity NO3 transporters), and AtGLU1 and AtGLU2 (both encoding glutamate synthase) in response to drought stress in Col-0. From the perspective of exploring the transcriptional interplay of the target genes with AtbZIP62 TF, we measured their expression by qPCR in the atbzip62 (lacking the AtbZIP62 gene) under the same conditions. Our recent study revealed that AtbZIP62 TF positively regulates the expression of AtPYD1 (Pyrimidine 1, a key gene of the de novo pyrimidine biosynthesis pathway know to share a common substrate with the N metabolic pathway). For this reason, we included the atpyd1-2 mutant in the study. Our findings revealed that the expression of AtNPF6.2/NRT1.4, AtNPF6.3/NRT1.1 and AtNRT2.2 was similarly regulated in atzbip62 and atpyd1-2 but differentially regulated between the mutant lines and Col-0. Meanwhile, the expression pattern of AtNRT2.1 in atbzip62 was similar to that observed in Col-0 but was suppressed in atpyd1-2. The breakthrough is that AtNRT2.2 had the highest expression level in Col-0, while being suppressed in atbzip62 and atpyd1-2. Furthermore, the transcript accumulation of AtGLU1 and AtGLU2 showed differential regulation patterns between Col-0 and atbzip62, and atpyd1-2. Therefore, results suggest that of all tested NO3 transporters, AtNRT2.2 is thought to play a preponderant role in contributing to NO3 transport events under the regulatory influence of AtbZIP62 TF in response to drought stress.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zi-Huan Zhang ◽  
Jia-Qiang Liu ◽  
Cheng-Di Hu ◽  
Xin-Tong Zhao ◽  
Fei-Yun Qin ◽  
...  

Luteolin (LUT) possesses multiple biologic functions and has beneficial effects for cardiovascular and cerebral vascular diseases. Here, we investigated the protective effects of LUT against subarachnoid hemorrhage (SAH) and the involvement of underlying molecular mechanisms. In a rat model of SAH, LUT significantly inhibited SAH-induced neuroinflammation as evidenced by reduced microglia activation, decreased neutrophil infiltration, and suppressed proinflammatory cytokine release. In addition, LUT markedly ameliorated SAH-induced oxidative damage and restored the endogenous antioxidant systems. Concomitant with the suppressed oxidative stress and neuroinflammation, LUT significantly improved neurologic function and reduced neuronal cell death after SAH. Mechanistically, LUT treatment significantly enhanced the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), while it downregulated nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation. Inhibition of Nrf2 by ML385 dramatically abrogated LUT-induced Nrf2 activation and NLRP3 suppression and reversed the beneficial effects of LUT against SAH. In neurons and microglia coculture system, LUT also mitigated oxidative stress, inflammatory response, and neuronal degeneration. These beneficial effects were associated with activation of the Nrf2 and inhibitory effects on NLRP3 inflammasome and were reversed by ML385 treatment. Taken together, this present study reveals that LUT confers protection against SAH by inhibiting NLRP3 inflammasome signaling pathway, which may be modulated by Nrf2 activation.


Sign in / Sign up

Export Citation Format

Share Document