scholarly journals Biochemical Characterization and Crystal Structure of a Novel NAD+-Dependent Isocitrate Dehydrogenase from Phaeodactylum tricornutum

2020 ◽  
Vol 21 (16) ◽  
pp. 5915
Author(s):  
Shi-Ping Huang ◽  
Lu-Chun Zhou ◽  
Bin Wen ◽  
Peng Wang ◽  
Guo-Ping Zhu

The marine diatom Phaeodactylum tricornutum originated from a series of secondary symbiotic events and has been used as a model organism for studying diatom biology. A novel type II homodimeric isocitrate dehydrogenase from P. tricornutum (PtIDH1) was expressed, purified, and identified in detail through enzymatic characterization. Kinetic analysis showed that PtIDH1 is NAD+-dependent and has no detectable activity with NADP+. The catalytic efficiency of PtIDH1 for NAD+ is 0.16 μM−1·s−1 and 0.09 μM−1·s−1 in the presence of Mn2+ and Mg2+, respectively. Unlike other bacterial homodimeric NAD-IDHs, PtIDH1 activity was allosterically regulated by the isocitrate. Furthermore, the dimeric structure of PtIDH1 was determined at 2.8 Å resolution, and each subunit was resolved into four domains, similar to the eukaryotic homodimeric NADP-IDH in the type II subfamily. Interestingly, a unique and novel C-terminal EF-hand domain was first defined in PtIDH1. Deletion of this domain disrupted the intact dimeric structure and activity. Mutation of the four Ca2+-binding sites in the EF-hand significantly reduced the calcium tolerance of PtIDH1. Thus, we suggest that the EF-hand domain could be involved in the dimerization and Ca2+-coordination of PtIDH1. The current report, on the first structure of type II eukaryotic NAD-IDH, provides new information for further investigation of the evolution of the IDH family.

2014 ◽  
Vol 70 (a1) ◽  
pp. C1822-C1822
Author(s):  
Geeta Deka ◽  
Shveta Bisht ◽  
H.S. Savithri ◽  
M.R.N Murthy

Diaminopropionate ammonia lyase (DAPAL) is a non-stereo specific fold-type II pyridoxal 5' phosphate (PLP) dependent enzyme that catalyzes the conversion of both D/L isoforms of the nonstandard amino acid Diaminopropionate (DAP) to pyruvate and ammonia. DAP is important for the synthesis of nonribosomal peptide antibiotics such as viomycin and capreomycin. Earlier structural studies on EcDAPAL bound to a reaction intermediate (aminoacrylate) suggested that the enzyme follows a two base mechanism, where Asp120 and Lys77 function as general bases to abstract proton from D-DAP and L-DAP respectively. A novel disulfide was observed near the active site, although its functional significance was not clear. In the present study, structural and biochemical characterization of active site mutants Asp120 (Asp120Asn/Ser/Thr/Cys) and Lys77 (Lys77His/ Thr/Ala/Val) of EcDAPAL has been carried out. Reduction of catalytic efficiency (Kcat/Km) of D120N EcDAPAL for D-DAP by 140 fold and presence of the uncatalyzed ligand at the active site in the crystal structure suggested that Asp120 indeed abstracts proton from D-DAP. Lys77, which was speculated to be important for proton abstraction from L DAP, however seemed to be crucial for PLP binding only. Presence of non-covalently bound PLP in the L77W mutant and occurence of both the ketoenamine, enolimine forms of internal aldimine in L77R mutant provided an in depth insight into the unique chemistry of internal aldimine formation in PLP dependent enzymes. To investigate the role of the novel disulfide bond near the active site, C265 and C291 were mutated to Serine. Studies on these mutants show that this disulfide bond gives additional stability to the protein and might regulate the entry of substrates to the active site. Thus, these studies provide deeper insights into the reaction mechanism of EcDAPAL, representing the overall reaction mechanism followed by several other fold-type II PLP pendent enzymes.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 740
Author(s):  
Joi Weeks ◽  
Alexandra I. Strom ◽  
Vinnie Widjaja ◽  
Sati Alexander ◽  
Dahra K. Pucher ◽  
...  

Isocitrate dehydrogenase (IDH1) catalyzes the reversible NADP+-dependent oxidation of isocitrate to α-ketoglutarate (αKG). IDH1 mutations, primarily R132H, drive > 80% of low-grade gliomas and secondary glioblastomas and facilitate the NADPH-dependent reduction of αKG to the oncometabolite D-2-hydroxyglutarate (D2HG). While the biochemical features of human WT and mutant IDH1 catalysis have been well-established, considerably less is known about mechanisms of regulation. Proteomics studies have identified lysine acetylation in WT IDH1, indicating post-translational regulation. Here, we generated lysine to glutamine acetylation mimic mutants in IDH1 to evaluate the effects on activity. We show that mimicking lysine acetylation decreased the catalytic efficiency of WT IDH1, with less severe catalytic consequences for R132H IDH1.


2008 ◽  
Vol 53 (1) ◽  
pp. 323-326 ◽  
Author(s):  
Hedi Mammeri ◽  
Moreno Galleni ◽  
Patrice Nordmann

ABSTRACT Two AmpC variants harboring the S287N substitution were obtained by mutagenesis from cephalosporinases representative of the phylogenetic groups A and B2 of Escherichia coli. Their biochemical characterization revealed that the S287N replacement led to an important increase in the catalytic efficiency toward extended-spectrum cephalosporins in the AmpC β-lactamase of group A only.


2012 ◽  
Vol 40 (4) ◽  
pp. 2995-3002 ◽  
Author(s):  
Ming-Ming Jin ◽  
Peng Wang ◽  
Xue Li ◽  
Xiao-Yu Zhao ◽  
Lei Xu ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Aishwarya Singh Chauhan ◽  
Arunesh Kumar ◽  
Nikhat J. Siddiqi ◽  
B. Sharma

Trichoderma spp. have been reported earlier for their excellent capacity of secreting extracellular α-galactosidase. This communication focuses on the optimization of culture conditions for optimal production of enzyme and its characterization. The evaluation of the effects of different enzyme assay parameters such as stability, pH, temperature, substrate concentrations, and incubation time on enzyme activity has been made. The most suitable buffer for enzyme assay was found to be citrate phosphate buffer (50 mM, pH 6.0) for optimal enzyme activity. This enzyme was fairly stable at higher temperature as it exhibited 72% activity at 60°C. The enzyme when incubated at room temperature up to two hours did not show any significant loss in activity. It followed Michaelis-Menten curve and showed direct relationship with varying substrate concentrations. Higher substrate concentration was not inhibitory to enzyme activity. The apparent Michaelis-Menten constant (Km), maximum rate of reaction (Vmax), Kcat, and catalytic efficiency values for this enzyme were calculated from the Lineweaver-Burk double reciprocal plot and were found to be 0.5 mM, 10 mM/s, 1.30 U mg−1, and 2.33 U mg−1 mM−1, respectively. This information would be helpful in understanding the biophysical and biochemical characteristics of extracellular α-galactosidase from other microbial sources.


2021 ◽  
Vol 22 (20) ◽  
pp. 11212
Author(s):  
Manuel Faúndez-Parraguez ◽  
Carlos Alarcón-Miranda ◽  
Young Hwa Cho ◽  
Hernán Pessoa-Mahana ◽  
Carlos Gallardo-Garrido ◽  
...  

The activation of the human cannabinoid receptor type II (CB2R) is known to mediate analgesic and anti-inflammatory processes without the central adverse effects related to cannabinoid receptor type I (CB1R). In this work we describe the synthesis and evaluation of a novel series of N-aryl-2-pyridone-3-carboxamide derivatives tested as human cannabinoid receptor type II (CB2R) agonists. Different cycloalkanes linked to the N-aryl pyridone by an amide group displayed CB2R agonist activity as determined by intracellular [cAMP] levels. The most promising compound 8d exhibited a non-toxic profile and similar potency (EC50 = 112 nM) to endogenous agonists Anandamide (AEA) and 2-Arachidonoylglycerol (2-AG) providing new information for the development of small molecules activating CB2R. Molecular docking studies showed a binding pose consistent with two structurally different agonists WIN-55212-2 and AM12033 and suggested structural requirements on the pyridone substituents that can satisfy the orthosteric pocket and induce an agonist response. Our results provide additional evidence to support the 2-pyridone ring as a suitable scaffold for the design of CB2R agonists and represent a starting point for further optimization and development of novel compounds for the treatment of pain and inflammation.


Sign in / Sign up

Export Citation Format

Share Document