scholarly journals Extracellular α-Galactosidase from Trichoderma sp. (WF-3): Optimization of Enzyme Production and Biochemical Characterization

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Aishwarya Singh Chauhan ◽  
Arunesh Kumar ◽  
Nikhat J. Siddiqi ◽  
B. Sharma

Trichoderma spp. have been reported earlier for their excellent capacity of secreting extracellular α-galactosidase. This communication focuses on the optimization of culture conditions for optimal production of enzyme and its characterization. The evaluation of the effects of different enzyme assay parameters such as stability, pH, temperature, substrate concentrations, and incubation time on enzyme activity has been made. The most suitable buffer for enzyme assay was found to be citrate phosphate buffer (50 mM, pH 6.0) for optimal enzyme activity. This enzyme was fairly stable at higher temperature as it exhibited 72% activity at 60°C. The enzyme when incubated at room temperature up to two hours did not show any significant loss in activity. It followed Michaelis-Menten curve and showed direct relationship with varying substrate concentrations. Higher substrate concentration was not inhibitory to enzyme activity. The apparent Michaelis-Menten constant (Km), maximum rate of reaction (Vmax), Kcat, and catalytic efficiency values for this enzyme were calculated from the Lineweaver-Burk double reciprocal plot and were found to be 0.5 mM, 10 mM/s, 1.30 U mg−1, and 2.33 U mg−1 mM−1, respectively. This information would be helpful in understanding the biophysical and biochemical characteristics of extracellular α-galactosidase from other microbial sources.

1982 ◽  
Vol 28 (5) ◽  
pp. 1140-1143 ◽  
Author(s):  
J W London ◽  
L M Shaw ◽  
L Theodorsen ◽  
J H Stromme

Abstract Response surface methodology (RSM) offers an empirical approach to the study of clinical enzyme assays. Variables such as pH, which are difficult to characterize by using theoretical enzyme kinetics, are easily included in RSM formulations. In this investigation, we studied with RSM the change in the measured activity of gamma-glutamy-transferase (EC 2.3.2.2) as a function of changes in concentrations of donor (gamma-glutamyl-3-carboxy-4-nitroanilide) acceptor (glycylglycine), and pH. The study defined large ranges for these variables over which maximum enzyme activity is obtained: donor 6.6 to 10.2 mmol/L, acceptor 129 to 250 mmol/L, and pH 7.8 to 8.5. The RSM regression polynomial was as accurate as a previously determined enzyme kinetic equation for predicting the transferase activity from given reagent substrate concentrations. Although not yielding a mechanistic understanding of an enzyme assay, RSM studies do produce an operational understanding of how an assay functions.


1986 ◽  
Vol 41 (3) ◽  
pp. 355-358 ◽  
Author(s):  
V. S. Ghole ◽  
P. S. Damle ◽  
W. H.-P. Thiemann

A homogeneous magnetic field of 1.1 T strength exhibits a significant influence on the activity of the enzyme ascorbic acid oxidase in vitro. A Lineweaver-Burk plot of the reaction shows the typical pattern of a mixed-type inhibition, i.e. a larger rate of reaction at low substrate concentrations and a smaller rate of reaction at high substrate concentration than that of the control without magnetic field applied.


2008 ◽  
Vol 53 (1) ◽  
pp. 323-326 ◽  
Author(s):  
Hedi Mammeri ◽  
Moreno Galleni ◽  
Patrice Nordmann

ABSTRACT Two AmpC variants harboring the S287N substitution were obtained by mutagenesis from cephalosporinases representative of the phylogenetic groups A and B2 of Escherichia coli. Their biochemical characterization revealed that the S287N replacement led to an important increase in the catalytic efficiency toward extended-spectrum cephalosporins in the AmpC β-lactamase of group A only.


2021 ◽  
Vol 66 (1) ◽  
pp. 72-79
Author(s):  
Thuoc Doan Van ◽  
Hung Nguyen Phuc

The effect of physical parameters such as temperature and pH on the production, activity, and stability of α-amylase from Bacillus subtilis V37 was investigated. The results indicated that the optimum culture conditions for enzyme activity were pH 7.0 and 35 oC. The optimum pH and temperature for enzyme activity were 6.0 and 70 oC. The crude enzyme was found to be stable in the pH range of 5.0 to 7.0. The enzyme was stable for 1 h at a temperature from 30 to 80 oC; nearly 100% of enzyme activity remained at temperatures of 30 - 40 oC, and about 34% of original activity remained at a temperature of 80 oC. These features demonstrated that α-amylase from B. subtilis V37 can be applied in many areas such as the food, fermentation, and animal feed industries.


2020 ◽  
Author(s):  
Wei Xie ◽  
Qi Yu ◽  
Yun Liu ◽  
Ruoting Cao ◽  
Ruiqing Zhang ◽  
...  

AbstractXylan and cellulose are the two major constituents in numerous types of lignocellulosic biomass, representing a promising resource for biofuels and other biobased industries. The efficient degradation of lignocellulose requires the synergistic actions of cellulase and xylanase. Thus, bifunctional enzyme incorporated xylanase/cellulase activity has attracted considerable attention since it has great cost savings potential. Recently, a novel GH10 family enzyme XynA identified from Bacillus sp. is found to degrade both cellulose and xylan. To understand its molecular catalytic mechanism, here we first solve the crystal structure of XynA at 2.3 Å. XynA is characterized with a classic (α/β)8 TIM-barrel fold (GH10 domain) flanked by the flexible N-terminal domain and C-terminal domain. Circular dichroism, protein thermal shift and enzyme activity assays reveal that conserved residues Glu182 and Glu280 are both important for catalytic activities of XynA, which is verified by the crystal structure of XynA with E182A/E280A double mutant. Molecular docking studies of XynA with xylohexaose and cellohexaose as well as site-directed mutagenesis and enzyme activity assay demonstrat that Gln250 and His252 are indispensible to cellulase and bifunctional activity, separately. These results elucidate the structural and biochemical features of XynA, providing clues for further modification of XynA for industrial application.


2021 ◽  
Vol 233 ◽  
pp. 02034
Author(s):  
Wei Zong ◽  
Shan Liu ◽  
Jeonyun Yun ◽  
Xiong Xiao ◽  
Zujun Deng ◽  
...  

Resveratrol in Polygonum cuspidatum is a β-glycoside, which can be hydrolyzed to resveratrol by β-glucosidase. it is an efficient production process to degrade polydatin from Polygonum cuspidatum extract by immobilized β-glucosidase. It is of great significance to explore suitable immobilization conditions to improve the catalytic efficiency and reusability of β-glucosidase for polydatin degradation and cost reduction. In this paper, the recombinant Escherichia coli bgl2238, which was screened and constructed from corn soil of Heilongjiang Province in the early laboratory, was immobilized by chitosan adsorption and glutaraldehyde crosslinking. The preparation conditions and immobilization process of bgl2238 were determined by single factor method: the optimal crosslinking time was 1 h, the optimal crosslinking temperature was 20 °C, the recovery rate of enzyme activity of bgl2238 was 87 %, and the enzyme activity was 859.65 mU/g. The optimum temperature of the immobilized bgl2238 is 50 °C, which is 6 °C higher than that of the free bgl2238, and the temperature stability and pH stability are improved. After six consecutive hydrolysis of Polygonum cuspidatum, the degradation rate of polydatin is still over 70 %, which proves that the immobilized bgl2238 has good reusability. This will be helpful to evaluate the application prospect of β - glucosidase immobilized in this system and determine the best conditions for its production.


2015 ◽  
Vol 17 (3) ◽  
pp. 84-88 ◽  
Author(s):  
Ogbonnaya Nwokoro

Abstract This work reports the effects of some culture conditions on the production of glucose isomerase by Bacillus licheniformis. The bacterium was selected based on the release of 3.62 mg/mL fructose from the fermentation of glucose. Enzyme was produced using a variety of carbon substrates but the highest enzyme activity was detected in a medium containing 0.5% xylose and 1% glycerol (specific activity = 6.88 U/mg protein). Media containing only xylose or glucose gave lower enzyme productivies (specific activities= 4.60 and 2.35 U/mg protein respectively). The effects of nitrogen substrates on glucose isomerase production showed that yeast extract supported maximum enzyme activity (specific activity = 5.24 U/mg protein). Lowest enzyme activity was observed with sodium trioxonitrate (specific activity = 2.44 U/mg protein). In general, organic nitrogen substrates supported higher enzyme productivity than inorganic nitrogen substrates. Best enzyme activity was observed in the presence of Mg2+ (specific activity = 6.85 U/mg protein) while Hg2+ was inhibitory (specific activity = 1.02 U/mg protein). The optimum pH for best enzyme activity was 6.0 while optimum temperature for enzyme production was 50ºC.


2019 ◽  
Vol 42 (3) ◽  
pp. 299-301
Author(s):  
Amar Nath Singh ◽  

The phenomena of the guttation and autolysis have been reported in various wild mushroom species in natural conditions. These have also been reported in various fungi including Trichoderma species from different sources during their artificial culturing. In the present article, these phenomena have been reported and discussed in the case of seed borne Trichoderma species isolated from the seeds of Dipterocarpus retusus and propagated under artificial culture conditions. The process of guttation and the autolysis are reported to have ecological significance to the respective organism in the ecosystem.


Author(s):  
ARUN KUMAR ◽  
POONAM KUMARI ◽  
KASAHUN GUDETA ◽  
JM JULKA

Objective: The paper aimed to immobilize amylase producing bacterial strain on a suitable matrix and characterization of its physicochemical properties so that much amount of amylase could be produced to be applied in different industries. Methods: Bacterial colonies were sub-cultured from samples collected from soil in freshly prepared dishes containing starch agar by dot method using sterile inoculating needles from which five different bacteria belonged to genus Bacillus were isolated and assigned as A1, A2, A3, A4, and A5. Results: It was found that A1 displayed the highest enzyme activity of 17.89 IU/ml with enzyme assay of 0.83 mg/ml and the bacterium was identified to be Bacillus subtilis. A5 displayed 10.13 IU/ml with protein contents of 0.11 mg/ml indicated that A1 possess the highest enzyme activities which were categorized under Bacillus and protein contents and A5 showed less amount of enzyme activities and protein contents as compared to other. Conclusion: The bacteria which were produced much amount of enzyme activities identified as Bacillus subtilis and recommended and have been recommended to be cultured for the production of amylase enzyme.


1972 ◽  
Vol 18 (12) ◽  
pp. 1449-1454 ◽  
Author(s):  
D W Moss

Abstract The considerations are discussed that make continuous monitoring of reaction-progress curves superior to fixed-incubation methods in the determination of enzyme activity. Provided that they are used with caution and their limitations are appreciated, fixed-incubation methods continue to fulfill a useful, though diminishing, role in clinical enzymology because of their adaptability to existing patterns of automation. The introduction of suitable mechanized equipment will favor the eventual complete adoption of the kinetic method. However, the use of such equipment should not be at the expense of th important characteristics of the kinetic principle.


Sign in / Sign up

Export Citation Format

Share Document