scholarly journals Minor Ginsenoside Rg2 and Rh1 Attenuates LPS-Induced Acute Liver and Kidney Damages via Downregulating Activation of TLR4-STAT1 and Inflammatory Cytokine Production in Macrophages

2020 ◽  
Vol 21 (18) ◽  
pp. 6656
Author(s):  
Diem Thi Ngoc Huynh ◽  
Naehwan Baek ◽  
Sohyun Sim ◽  
Chang-Seon Myung ◽  
Kyung-Sun Heo

Ginsenosides have been reported to have various biological effects, such as immune regulation and anticancer activity. In this study, we investigated the anti-inflammatory role of a combination of Rg2 and Rh1, which are minor ginsenosides, in lipopolysaccharide (LPS)-stimulated inflammation. In vitro experiments were performed using the RAW264.7 cell line, and an in vivo model of inflammation was established using LPS-treated ICR mice. We employed Griess assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, quantitative reverse transcriptase-polymerase chain reaction, western blotting, immunofluorescence staining, and hematoxylin and eosin staining to evaluate the effect of Rg2 and Rh1. We found that Rg2 and Rh1 significantly decreased LPS-induced major inflammatory mediator production, inducible-nitric oxide synthase expression, and nitric oxide production in macrophages. Moreover, Rg2 and Rh1 combination treatment inhibited the binding of LPS to toll-like receptor 4 (TLR4) on peritoneal macrophages. Therefore, the combination of ginsenoside Rg2 and Rh1 suppressed inflammation by abolishing the binding of LPS to TLR4, thereby inhibiting the TLR4-mediated signaling pathway. The combined ginsenoside synergistically blocked LPS-mediated PKCδ translocation to the plasma membrane, resulting in p38-STAT1 activation and NF-κB translocation. In addition, mRNA levels of pro-inflammatory cytokines, including TNF-α, IL-1β, and IFN-β, were significantly decreased by combined ginsenoside treatment. Notably, the 20 mg/kg ginsenoside treatment significantly reduced LPS-induced acute tissue inflammation levels in vivo, as indicated by the tissue histological damage scores and the levels of biochemical markers for liver and kidney function from mouse serum. These results suggest that the minor ginsenosides Rg2 and Rh1 may play a key role in prevention of LPS-induced acute inflammation and tissue damage.

2018 ◽  
Vol 60 (No. 8) ◽  
pp. 359-366
Author(s):  
J. Li ◽  
B. Shi ◽  
S. Yan ◽  
L. Jin ◽  
Y. Guo ◽  
...  

The effects of chitosan on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) activity and gene expression in vivo or vitro were investigated in weaned piglets. In vivo, 180 weaned piglets were assigned to five dietary treatments with six replicates. The piglets were fed on a basal diet supplemented with 0 (control), 100, 500, 1000, and 2000 mg chitosan/kg feed, respectively. In vitro, the peripheral blood mononuclear cells (PBMCs) from a weaned piglet were cultured respectively with 0 (control), 40, 80, 160, and 320 µg chitosan/ml medium. Results showed that serum NO concentrations on days 14 and 28 and iNOS activity on day 28 were quadratically improved with increasing chitosan dose (P < 0.05). The iNOS mRNA expressions were linearly or quadratically enhanced in the duodenum on day 28, and were improved quadratically in the jejunum on days 14 and 28 and in the ileum on day 28 (P < 0.01). In vitro, the NO concentrations, iNOS activity, and mRNA expression in unstimulated PBMCs were quadratically enhanced by chitosan, but the improvement of NO concentrations and iNOS activity by chitosan were markedly inhibited by N-(3-[aminomethyl] benzyl) acetamidine (1400w) (P < 0.05). Moreover, the increase of NO concentrations, iNOS activity, and mRNA expression in PBMCs induced by lipopolysaccharide (LPS) were suppressed significantly by chitosan (P < 0.05). The results indicated that the NO concentrations, iNOS activity, and mRNA expression in piglets were increased by feeding chitosan in a dose-dependent manner. In addition, chitosan improved the NO production in unstimulated PBMCs but inhibited its production in LPS-induced cells, which exerted bidirectional regulatory effects on the NO production via modulated iNOS activity and mRNA expression.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Belinda A Di Bartolo ◽  
Sian P Cartland ◽  
Leonel Prado-Lourenco ◽  
Nor Saadah M Azahri ◽  
Thuan Thai ◽  
...  

Background: Angiogenesis and neovascularization are essential processes that follow ischemia insults. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) not only induces endothelial cell (EC) death and inhibits angiogenesis, but also promotes EC migration, invasion and proliferation in vitro . These seemingly opposite effects make its role in angiogenesis in vivo unclear. Using TRAIL -/- and wild-type mice, we sought to determine the role of TRAIL in angiogenesis and neovascularisation. We also sought mechanisms in vitro . Methods and Results: Reduced vascularisation assessed by real-time in vivo 3D Vevo ultrasound imaging and CD31 staining was observed in TRAIL -/- mice 28 d after hindlimb ischemia. Moreover, reduced capillary formation and increased apoptosis was evident in TRAIL -/- muscles even at 3 d after ischemic surgery. We have previously shown that fibroblast growth factor-2 (FGF-2), a potent angiogenic factor, regulates TRAIL gene expression in vascular smooth muscle cells. Indeed, FGF-2 also regulates TRAIL expression in ECs, and FGF-2-inducible proliferation, migration and tubule formation was inhibited with siRNA targeting TRAIL. Notably, both FGF-2 and TRAIL significantly increased NOX4 expression. TRAIL-inducible angiogenic activity in ECs was inhibited with siRNAs targeting NOX4, and consistent with these, NOX4 mRNA was reduced in 3 d ischemic hindlimbs of TRAIL -/- mice. TRAIL stimulated intracellular H 2 O 2 levels in ECs, and TRAIL-inducible proliferation, migration and tubule formation was inhibited with not only PEG-catalase, a H 2 O 2 scavenger, but also blocked with L-NAME, a nitric oxide synthase inhibitor. Conclusions: This is the first demonstration showing that TRAIL promotes angiogenesis in vivo . We show for the first time that the TRAIL stimulates NOX4 expression to mediate nitric oxide-dependent angiogenic effects. This has significant therapeutic implications such that TRAIL may improve the angiogenic response to ischemia and increase perfusion recovery in patients with CVD and diabetes.


Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 8 ◽  
Author(s):  
Mayra Antúnez-Mojica ◽  
Andrés Rojas-Sepúlveda ◽  
Mario Mendieta-Serrano ◽  
Leticia Gonzalez-Maya ◽  
Silvia Marquina ◽  
...  

By using a zebrafish embryo model to guide the chromatographic fractionation of antimitotic secondary metabolites, seven podophyllotoxin-type lignans were isolated from a hydroalcoholic extract obtained from the steam bark of Bursera fagaroides. The compounds were identified as podophyllotoxin (1), β-peltatin-A-methylether (2), 5′-desmethoxy-β-peltatin-A-methylether (3), desmethoxy-yatein (4), desoxypodophyllotoxin (5), burseranin (6), and acetyl podophyllotoxin (7). The biological effects on mitosis, cell migration, and microtubule cytoskeleton remodeling of lignans 1–7 were further evaluated in zebrafish embryos by whole-mount immunolocalization of the mitotic marker phospho-histone H3 and by a tubulin antibody. We found that lignans 1, 2, 4, and 7 induced mitotic arrest, delayed cell migration, and disrupted the microtubule cytoskeleton in zebrafish embryos. Furthermore, microtubule cytoskeleton destabilization was observed also in PC3 cells, except for 7. Therefore, these results demonstrate that the cytotoxic activity of 1, 2, and 4 is mediated by their microtubule-destabilizing activity. In general, the in vivo and in vitro models here used displayed equivalent mitotic effects, which allows us to conclude that the zebrafish model can be a fast and cheap in vivo model that can be used to identify antimitotic natural products through bioassay-guided fractionation.


2019 ◽  
Vol 7 (4) ◽  
pp. 65
Author(s):  
Leguina-Ruzzi ◽  
Ortiz Diban ◽  
Velarde

Type 2 diabetes affects over 340 million people worldwide. This condition can go unnoticed and undiagnosed for years, leading to a late stage where high glycaemia produces complications such as delayed wound healing. Studies have shown that 12-HHT through BLT2, accelerates keratinocyte migration and wound healing. Additionally, evidence has shown the role of nitric oxide as a pro-regenerative mediator, which is decreased in diabetes. Our main goal was to study the association between the 12-HHT/BLT2 axis and the nitric oxide production in wound healing under different glycaemia conditions. For that purpose, we used in vivo and in vitro models. Our results show that the skin from diabetic mice showed reduced BLT2 and iNOS mRNA, TEER, 12-HHT, nitrites, and tight junction levels, accompanied by higher MMP9 mRNA levels. Furthermore, a positive correlation between BLT2 mRNA and nitrites was observed. In vitro, HaCaT-BLT2 cells showed higher nitric oxide and tight junction levels, and reduced MMP9 mRNA levels, compared to mock-keratinocytes under low and high glucose condition. The wound healing capacity was associated with higher nitric oxide production and was affected by the NOS inhibition. We suggest that the BLT2 expression improves the keratinocyte response to hyperglycaemia, associated with the production of nitric oxide.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3667
Author(s):  
Lien-Yu Chou ◽  
Yu-Ming Chao ◽  
Yen-Chun Peng ◽  
Hui-Ching Lin ◽  
Yuh-Lin Wu

Brain-derived neurotrophic factor (BDNF) is an important factor for memory consolidation and cognitive function. Protein kinase A (PKA) signaling interacts significantly with BDNF-provoked downstream signaling. Glucosamine (GLN), a common dietary supplement, has been demonstrated to perform a variety of beneficial physiological functions. In the current study, an in vivo model of 7-week-old C57BL/6 mice receiving daily intraperitoneal injection of GLN (0, 3, 10 and 30 mg/animal) was subjected to the novel object recognition test in order to determine cognitive performance. GLN significantly increased cognitive function. In the hippocampus GLN elevated tissue cAMP concentrations and CREB phosphorylation, and upregulated the expression of BDNF, CREB5 and the BDNF receptor TrkB, but it reduced PDE4B expression. With the in vitro model in the HT22 hippocampal cell line, GLN exposure significantly increased protein and mRNA levels of BDNF and CREB5 and induced cAMP responsive element (CRE) reporter activity; the GLN-mediated BDNF expression and CRE reporter induction were suppressed by PKA inhibitor H89. Our current findings suggest that GLN can exert a cognition-enhancing function and this may act at least in part by upregulating the BDNF levels via a cAMP/PKA/CREB-dependent pathway.


Alcohol ◽  
1994 ◽  
Vol 11 (6) ◽  
pp. 539-547 ◽  
Author(s):  
Stanley S. Greenberg ◽  
Jianming Xie ◽  
Ye Wang ◽  
Jay Kolls ◽  
Tadeus Malinski ◽  
...  

1995 ◽  
Vol 15 (6) ◽  
pp. 904-913 ◽  
Author(s):  
Mordecai Y.-T. Globus ◽  
Ricardo Prado ◽  
J. Sanchez-Ramos ◽  
Weizhao Zhao ◽  
W. Dalton Dietrich ◽  
...  

Nitric oxide has been implicated in N-methyl-d-aspartate (NMDA)-mediated damage in vitro; however, its role in excitotoxic damage in vivo is not clear. In the present study we evaluated the histopathological and hemodynamic consequences of intrastriatal injections of various doses of NMDA and determined the effects of nitric oxide synthase inhibition on these changes. NMDA was injected into the striatum at doses of 50, 150, and 300 nmol with or without Nω-nitro-l-arginine methyl ester (L-NAME; 100 μg, locally). Three days following injections histopathological assessment was performed by morphometric analysis of the lesion area in multiple sections taken from the anterior to the posterior borders of the lesion. In animals injected with 150 and 300 nmol of NMDA (±L-NAME), local CBF (lCBF) was determined 30 min following injections using 14C-iodoantipyrine autoradiography. All NMDA-treated animals showed a well-demarcated lesion extending beyond the injection site. The volume of the lesion correlated significantly with the NMDA dose injected. The effects of L-NAME on lesion size were dependent on the dose of the NMDA. The lesion induced by 50 nmol of NMDA was not affected by L-NAME. With a dose of 150 nmol of NMDA, L-NAME induced a 43% increase in lesion volume. In contrast, a 38% decrease in lesion size was observed in animals treated with 300 nmol of NMDA combined with L-NAME. At a dose of 150 nmol, NMDA induced a significant elevation in lCBF, which was restricted to regions close to the injection site including the center areas of the anterior and middle striatum. The increase in lCBF observed with 150 nmol of NMDA was significantly attenuated in the NMDA + L-NAME-treated group. The lCBF changes induced by 300 nmol of NMDA were not significantly different from those in the 150-nmol group; however, the extent of the regions involved was larger. The increases in lCBF were observed in all striatal regions including the central and peripheral areas. L-NAME did not have a significant effect on the lCBF changes induced by NMDA at a dose of 300 nmol. These data suggest that in vivo the involvement of nitric oxide in NMDA toxicity depends on the NMDA dose and on the participation of hemodynamic mechanisms secondary to NMDA exposure.


2005 ◽  
Vol 33 (4) ◽  
pp. 701-704 ◽  
Author(s):  
K. Kashfi ◽  
B. Rigas

Nitric-oxide-donating aspirin (NO-ASA), consisting of ASA (aspirin) plus an -ONO2 moiety linked to it via a molecular spacer, is a new drug for cancer prevention. NO-ASA seems to overcome the low potency and toxicity of traditional ASA. The -ONO2 moiety is responsible for releasing NO, and it appears to be required for biological activity. In studies in vitro, NO-ASA inhibits the growth of colon, pancreatic, prostate, lung, skin, leukaemia and breast cancer cells, and is up to 6000-fold more potent than traditional ASA. This effect is owing to cell kinetics [inhibition of proliferation, induction of apoptosis (multiple criteria) and blocking the G1 to S cell-cycle transition] and cell signalling [inhibition of Wnt signalling (IC50=0.2 μM), inhibition of NF-κB (nuclear factor κB) activation (IC50=7.5 μM), inhibition of nitric oxide synthase-2 expression (IC50=48 μM), inhibition of MAPK (mitogen-activated protein kinase) signalling (IC50=10 μM) and induction of cyclo-oxygenase-2 at approx. 10 μM]. In studies in vivo, NO-ASA inhibits intestinal carcinogenesis in Min mice (tumour multiplicity was reduced by 59% after 3 weeks, with no effect in control animals and no side effects) and in the N-nitrosobis(2-oxopropyl)amine model of pancreatic cancer, where there was an 89% reduction in NO-ASA (3000 p.p.m. in the diet)-treated animals (P<0.001). There was no statistically significant effect by traditional ASA at equimolar doses. Our data indicate that NO-ASA is a highly promising agent for the prevention and/or treatment of cancer.


Sign in / Sign up

Export Citation Format

Share Document