scholarly journals Combined Transcriptome and Proteome Analysis of Masson Pine (Pinus massoniana Lamb.) Seedling Root in Response to Nitrate and Ammonium Supplementations

2020 ◽  
Vol 21 (20) ◽  
pp. 7548
Author(s):  
Qifei Ren ◽  
Yunchao Zhou ◽  
Xinwei Zhou

Nitrogen (N) is an essential nutrient for plant growth and development. Plant species respond to N fluctuations and N sources, i.e., ammonium or nitrate, differently. Masson pine (Pinus massoniana Lamb.) is one of the pioneer plants in the southern forests of China. It shows better growth when grown in medium containing ammonium as compared to nitrate. In this study, we had grown masson pine seedlings in medium containing ammonium, nitrate, and a mixture of both, and performed comparative transcriptome and proteome analyses to observe the differential signatures. Our transcriptome and proteome resulted in the identification of 1593 and 71 differentially expressed genes and proteins, respectively. Overall, the masson pine roots had better performance when fed with a mixture of ammonium and nitrate. The transcriptomic and proteomics results combined with the root morphological responses suggest that when ammonium is supplied as a sole N-source to masson pine seedlings, the expression of ammonium transporters and other non-specific NH4+-channels increased, resulting in higher NH4+ concentrations. This stimulates lateral roots branching as evidenced from increased number of root tips. We discussed the root performance in association with ethylene responsive transcription factors, WRKYs, and MADS-box transcription factors. The differential analysis data suggest that the adaptability of roots to ammonium is possibly through the promotion of TCA cycle, owing to the higher expression of malate synthase and malate dehydrogenase. Masson pine seedlings managed the increased NH4+ influx by rerouting N resources to asparagine production. Additionally, flavonoid biosynthesis and flavone and flavonol biosynthesis pathways were differentially regulated in response to increased ammonium influx. Finally, changes in the glutathione s-transferase genes suggested the role of glutathione cycle in scavenging the possible stress induced by excess NH4+. These results demonstrate that masson pine shows increased growth when grown under ammonium by increased N assimilation. Furthermore, it can tolerate high NH4+ content by involving asparagine biosynthesis and glutathione cycle.

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 332
Author(s):  
Min Li ◽  
Haoyun Wang ◽  
Xizhou Zhao ◽  
Zhongke Lu ◽  
Xueguang Sun ◽  
...  

Masson pine is an important afforestation species in southern China, where seasonal drought is common. The present study focused on the effects of Suillus placidus, an ectomycorrhizal fungus, inoculation on the growth and physiological and biochemical performance of masson pine seedlings under four different watering treatments (well-watered, mild drought, moderate drought, and severe drought) to evaluate the symbiotic relationship between S. placidus and masson pine seedlings. Ectomycorrhizal-inoculated (ECM) and non-inoculated (NM) seedlings were grown in pots and maintained for 60 days using the weighing method. Results showed that seedlings’ growth, dry weight, RWC, chlorophyll content, PSII efficiency, and photosynthesis decreased as drought stress intensified in both ECM and NM plants. This suggests that drought stress significantly limits the growth and photosynthetic performance of masson pine seedlings. Nevertheless, increased An/gs and proline contents in both NM and ECM prevented oxidative damage caused by drought stress. In addition, increased peroxidase (POD) activity is an essential defense mechanism of ECM seedling under drought stress. Compared with NM, ECM seedlings showed faster growth, higher RWC, and photosynthetic performance, and lower lipid peroxidation in cell membranes under drought stress, as indicated by higher POD activity and lower proline and malondialdehyde (MDA). Our experiment found that S. placidus inoculation can enhance the drought resistance of masson pine seedlings by increasing antioxidant enzyme activity, water use efficiency, and proline content, thereby enhancing growth under water-deficiency conditions. S. placidus can be used to cultivate high-quality seedlings and improve their survival in regions that experience seasonal droughts.


2020 ◽  
Vol 477 ◽  
pp. 118503
Author(s):  
Cheng Deng ◽  
Shougong Zhang ◽  
Yuanchang Lu ◽  
Robert E. Froese ◽  
Xiaojun Xu ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 646 ◽  
Author(s):  
Wang ◽  
Chen ◽  
Xie ◽  
Cai ◽  
Yuan ◽  
...  

The local chemistry and mechanics of the control and phenol formaldehyde (PF) resin modified wood cell walls were analyzed to illustrate the modification mechanism of wood. Masson pine (Pinus massoniana Lamb.) is most widely distributed in the subtropical regions of China. However, the dimensional instability and low strength of the wood limits its use. Thus, the wood was modified by PF resin at concentrations of 15%, 20%, 25%, and 30%, respectively. The density, surface morphology, chemical structure, cell wall mechanics, shrinking and swelling properties, and macro-mechanical properties of Masson pine wood were analyzed to evaluate the modification effectiveness. The morphology and Raman spectra changes indicated that PF resin not only filled in the cell lumens, but also penetrated into cell walls and interacted with cell wall polymers. The filling and diffusing of resin in wood resulted in improved dimensional stability, such as lower swelling and shrinking coefficients, an increase in the elastic modulus (Er) and hardness (H) of wood cell walls, the hardness of the transverse section and compressive strength of the wood. Both the dimensional stability and mechanical properties improved as the PF concentration increased to 20%; that is, a PF concentration of 20% may be preferred to modify Masson pine wood.


Holzforschung ◽  
2018 ◽  
Vol 72 (12) ◽  
pp. 1063-1070 ◽  
Author(s):  
Xinzhou Wang ◽  
Xuanzong Chen ◽  
Xuqin Xie ◽  
Yan Wu ◽  
Linguo Zhao ◽  
...  

AbstractIn an attempt to evaluate the effects of thermal treatment on wood cell walls (CWs), Masson pine (Pinus massonianaLamb.) wood was thermally modified (TM) at 150, 170 and 190°C for 2, 4 and 6 h, respectively. The chemical properties, cellulose crystallinity (CrI) and micromechanics of the control and thermally modified wood (TMW) were analyzed by wet chemical analysis, X-ray diffraction and nanoindentation. The relative lignin content andCrI increased after the TM partly degraded the amorphous wood polymers. The relative lignin content was higher in TMW and the equilibrium moisture content decreased. Moreover, the elastic modulus (Er) and hardness (H) of TMW were lowered along with the creep ratio decrement (CIT) of CWs. However, a severe treatment (e.g. 190°C/6 h) may negatively affect the mechanical properties of CWs caused by the partial degradation of hemicelluloses and also cellulose.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Peihuang Zhu ◽  
Yu Chen ◽  
Jinfeng Zhang ◽  
Fan Wu ◽  
Xiaofeng Wang ◽  
...  

AbstractTranscription factors (TFs) play crucial regulatory roles in controlling the expression of the target genes in plants. APETALA2/Ethylene-responsive factors (AP2/ERF) are part of a large superfamily of plant-specific TFs whose members are involved in the control of plant metabolism, development and responses to various biotic and abiotic stresses. However, the AP2/ERF superfamily has not been identified systematically in Masson pine (Pinus massoniana), which is one of the most important conifer in southern China. Therefore, we performed systematic identification of the AP2/ERF superfamily using transcriptome sequencing data from Masson pine. In the current study, we obtained 88 members of the AP2/ERF superfamily. All PmAP2/ERF members could be classified into 3 main families, AP2 (7 members), RAV (7 members), ERF (73 members) families, and a soloist protein. Subcellular localization assays suggested that two members of PmAP2/ERF were nuclear proteins. Based on pine wood nematode (PWN) inoculated transcriptome and qPCR analysis, we found that many members of PmAP2/ERF could respond to PWN inoculation and PWN related treatment conditions in vitro. In general, members of the AP2/ERF superfamily play an important role in the response of Masson pine responds to PWN. Furthermore, the roles of the AP2/ERF superfamily in other physiological activities of Masson pine remain to be further studied.


Sign in / Sign up

Export Citation Format

Share Document