scholarly journals The Role of Zinc in Male Fertility

2020 ◽  
Vol 21 (20) ◽  
pp. 7796
Author(s):  
Deborah Allouche-Fitoussi ◽  
Haim Breitbart

Several studies proposed the importance of zinc ion in male fertility. Here, we describe the properties, roles and cellular mechanisms of action of Zn2+ in spermatozoa, focusing on its involvement in sperm motility, capacitation and acrosomal exocytosis, three functions that are crucial for successful fertilization. The impact of zinc supplementation on assisted fertilization techniques is also described. The impact of zinc on sperm motility has been investigated in many vertebrate and invertebrate species. It has been reported that Zn2+ in human seminal plasma decreases sperm motility and that Zn2+ removal enhances motility. Reduction in the intracellular concentration of Zn2+ during epididymal transit allows the development of progressive motility and the subsequent hyper activated motility during sperm capacitation. Extracellular Zn2+ affects intracellular signaling pathways through its interaction with the Zn2+ sensing receptor (ZnR), also named GPR39. This receptor was found in the sperm tail and the acrosome, suggesting the possible involvement of Zn2+ in sperm motility and acrosomal exocytosis. Our studies showed that Zn2+ stimulates bovine sperm acrosomal exocytosis, as well as human sperm hyper-activated motility, were both mediated by GPR39. Zn2+ binds and activates GPR39, which activates the trans-membrane-adenylyl-cyclase (tmAC) to catalyze cAMP production. The NHE (Na+/H+-exchanger) is activated by cAMP, leading in increased pHi and activation of the sperm-specific Ca2+ channel CatSper, resulting in an increase in [Ca2+]i, which, together with HCO3−, activates the soluble adenylyl-cyclase (sAC). The increase in [cAMP]i activates protein kinase A (PKA), followed by activation of the Src-epidermal growth factor receptor-Pphospholipase C (Src-EGFR-PLC) cascade, resulting in inositol-triphosphate (IP3) production, which mobilizes Ca2+ from the acrosome, causing a further increase in [Ca2+]i and the development of hyper-activated motility. PKA also activates phospholipase D1 (PLD1), leading to F-actin formation during capacitation. Prior to the acrosomal exocytosis, PLC induces phosphadidylinositol-4,5-bisphosphate (PIP2) hydrolysis, leading to the release of the actin-severing protein gelsolin to the cytosol, which is activated by Ca2+, resulting in F-actin breakdown and the occurrence of acrosomal exocytosis.

Author(s):  
Naina Kumar ◽  
Amit Kant Singh

Abstract Sperms have attracted the attention of many researchers since it was discovered by Antonie van Leeuwenhoek in 1677. Though a small cell, its every part has complex structure and a different function to play in carrying life further. Sperm tail is the most complicated structure with more than 1000 proteins involved in its functioning. With advent of advanced three-dimensional microscopes, many studies are still undergoing to understand the exact mechanism of sperm tail movement. Most recent studies have shown that sperms move by spinning rather than swimming. Furthermore, each small subunit of tail including axonemal and peri-axonemal structures play essential roles in sperm motility, capacitation, hyperactivation, fertilization. Methodology: Relevant literature (from 1982 till 2020) on sperm tail anatomy, movement and functions were searched from various English language full length and review articles using PUBMED, SCOPUS or Google database. Conclusion: There is still a lot needed to be discovered about human sperm tail movement and its role in male fertility. Sperm tail has a complex anatomy with surrounding axoneme having 9+2 microtubules (9 outer doublet and one central doublet) arrangement along its entire length and additional peri-axonemal structures that all contribute in sperm motility and fertilization. In future various sperm tail proteins and its subunits can be used as markers of male fertility.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hwang I. S. Thomas ◽  
Ying-Shiuan Chen ◽  
Ching-Han Hung ◽  
Dilip Bhargava Sreerangaraja Urs ◽  
Tien-Ling Liao ◽  
...  

Sperm motility is one of the major determinants of male fertility. Since sperm need a great deal of energy to support their fast movement by active metabolism, they are thus extremely vulnerable to oxidative damage by the reactive oxygen species (ROS) and other free radicals generated as byproducts in the electron transport chain. The present study is aimed at understanding the impact of a mitochondrial oxidizing/reducing microenvironment in the etiopathology of male infertility. We detected the mitochondrial DNA (mtDNA) 4,977 bp deletion in human sperm. We examined the gene mutation of ATP synthase 6 (ATPase6 m.T8993G) in ATP generation, the gene polymorphisms of uncoupling protein 2 (UCP2, G-866A) in the uncoupling of oxidative phosphorylation, the role of genes such as manganese superoxide dismutase (MnSOD, C47T) and catalase (CAT, C-262T) in the scavenging system in neutralizing reactive oxygen species, and the role of human 8-oxoguanine DNA glycosylase (hOGG1, C1245G) in 8-hydroxy-2 ′ -deoxyguanosine (8-OHdG) repair. We found that the sperm with higher motility were found to have a higher mitochondrial membrane potential and mitochondrial bioenergetics. The genotype frequencies of UCP2 G-866A, MnSOD C47T, and CAT C-262T were found to be significantly different among the fertile subjects, the infertile subjects with more than 50% motility, and the infertile subjects with less than 50% motility. A higher prevalence of the mtDNA 4,977 bp deletion was found in the subjects with impaired sperm motility and fertility. Furthermore, we found that there were significant differences between the occurrences of the mtDNA 4,977 bp deletion and MnSOD (C47T) and hOGG1 (C1245G). In conclusion, the maintenance of the mitochondrial redox microenvironment and genome integrity is an important issue in sperm motility and fertility.


2018 ◽  
Vol 56 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Mohammad Mostakhdem Hashemi ◽  
Nasser Behnampour ◽  
Mojgan Nejabat ◽  
Afsaneh Tabandeh ◽  
Behrouz Ghazi-Moghaddam ◽  
...  

Abstract Introduction. Human seminal plasma contains a variety of macro and trace elements including magnesium (Mg), copper (Cu), zinc (Zn), and iron (Fe) that have essential roles in normal functioning of semen and its quality. The imbalance of these elements has been reported in several pathologic and male infertility disorders. Therefore, this study aimed to determine the levels of these elements in seminal plasma samples, their relationships with each other and their impact on sperm motility. Methods. Overall, 192 males (96 normospermic and 96 asthenospermic males) were enrolled in the study. Semen samples were collected by masturbation and computer-assisted/aided semen analysis of sperm motility was performed. The samples were centrifuged and seminal levels of Mg, Cu, Zn and Fe were measured using atomic absorption spectroscopy. Results. The levels of Zn did not differ between the two groups, while the levels of Mg, Cu, and Fe were significantly higher in normospermic males. Fe showed a positive correlation with Mg and Cu in asthenospermic group. However, a negative relationship was found between Mg and Fe levels and between Mg and sperm concentration in the normospermic group. Fe levels were higher in the normospermic group compared to the asthenospermic group. Nevertheless, increased Fe levels caused a decrease in most of sperm motility fractions. Conclusion: Elements play major roles in male fertility and directly affect sperm quality. According to the results of this study, the levels of Zn do not affect the sperm quality and motility, while Fe, Cu and Mg are decreased in males with sperm motility problems. Nevertheless, Fe levels can adversely affect sperm motility in normospermic men.


2019 ◽  
Vol 112 (3) ◽  
pp. e119
Author(s):  
Nabil Sayme ◽  
Marija Kljajic ◽  
Thomas Krebs ◽  
Dieter Maas

Author(s):  
Melanie Balbach ◽  
Lubna Ghanem ◽  
Thomas Rossetti ◽  
Navpreet Kaur ◽  
Carla Ritagliati ◽  
...  

Abstract Soluble adenylyl cyclase (sAC: ADCY10) has been genetically confirmed to be essential for male fertility in mice and humans. In mice, ex vivo studies of dormant, caudal epididymal sperm demonstrated that sAC is required for initiating capacitation and activating motility. We now use an improved sAC inhibitor, TDI-10229, for a comprehensive analysis of sAC function in mouse and human sperm. In contrast to caudal epididymal mouse sperm, human sperm are collected post-ejaculation, after sAC activity has already been stimulated. In addition to preventing the capacitation-induced stimulation of sAC and protein kinase A activities, tyrosine phosphorylation, alkalinization, beat frequency, and acrosome reaction in dormant mouse sperm, sAC inhibitors interrupt each of these capacitation-induced changes in ejaculated human sperm. Furthermore, we show for the first time that sAC is required during acrosomal exocytosis in mouse and human sperm. These data define sAC inhibitors as candidates for non-hormonal, on-demand contraceptives suitable for delivery via intravaginal devices in women.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Miroslava Cedikova ◽  
Michaela Miklikova ◽  
Lenka Stachova ◽  
Martina Grundmanova ◽  
Zdenek Tuma ◽  
...  

Propolis is a natural product that honeybees collect from various plants. It is known for its beneficial pharmacological effects. The aim of our study was to evaluate the impact of propolis on human sperm motility, mitochondrial respiratory activity, and membrane potential. Semen samples from 10 normozoospermic donors were processed according to the World Health Organization criteria. Propolis effects on the sperm motility and mitochondrial activity parameters were tested in the fresh ejaculate and purified spermatozoa. Propolis preserved progressive motility of spermatozoa in the native semen samples. Oxygen consumption determined in purified permeabilized spermatozoa by high-resolution respirometry in the presence of adenosine diphosphate and substrates of complex I and complex II (stateOXPHOSI+II) was significantly increased in the propolis-treated samples. Propolis also increased uncoupled respiration in the presence of rotenone (stateETSII) and complex IV activity, but it did not influence state LEAK induced by oligomycin. Mitochondrial membrane potential was not affected by propolis. This study demonstrates that propolis maintains sperm motility in the native ejaculates and increases activities of mitochondrial respiratory complexes II and IV without affecting mitochondrial membrane potential. The data suggest that propolis improves the total mitochondrial respiratory efficiency in the human spermatozoa in vitro thereby having potential to improve sperm motility.


2008 ◽  
Vol 1 (4) ◽  
pp. A353
Author(s):  
Shenandoah Robinson ◽  
Qing Li

Introduction Many infants born very preterm who suffer brain damage most likely experienced a combined insult from intrauterine infection and placental insufficiency. Damage is thought to be synergistic rather than additive but the mechanisms of combined injury remain elusive. A combination of lipopolysaccharide-induced inflammation and hypoxia-ischemia has been used in rats to model the dual insult that occurs in human infants prenatally. Erythropoietin, a pleiotrophic cytokine that is essential for central nervous system development, ameliorates brain injury after isolated hypoxic-ischemic or inflammatory insults through different intracellular signaling pathways. We hypothesized that exogenous neonatal EPO administration would lessen the damage of a combined prenatal insult in rats. Methods On embryonic Day 18 fetal rats experienced 60 minutes of transient uterine artery occlusion with or without intracervical LPS administration with sham controls receiving surgery but no occlusion and saline for LPS. Survival was recorded and histological biochemical and functional assays were performed. Means were compared with ANOVA with Tukey HSD post hoc analysis. Results After a combined insult of HI and 0.15-mg/kg LPS on E18 the survival of pups by postnatal Day 1 (P1) decreased from 77% with HI alone to 22% for LPS plus HI. When exogenous systemic EPO was administered P1–P3 survival to P9 improved markedly from 40% (2 of 5) for saline-treated insult pups to 100% (6 of 6) for EPO-treated. Initial histological analyses show EPO decreases the number of brain activated caspase 3 and activated microglia by P9. Additional analyses will be presented. Conclusion As at least 60% of placentas from infants born pre-term show evidence of chorioamnionitis, assessment of the impact of exogenous EPO on a model of a combination injury is essential prior to proceeding with a clinical trial. Initial results indicate neonatal exogenous EPO mitigates damage from the combined insult.


2020 ◽  
Vol 10 (3) ◽  
pp. 228-236 ◽  
Author(s):  
Lamia Taouzinet ◽  
Sofiane Fatmi ◽  
Allaeddine Khellouf ◽  
Mohamed Skiba ◽  
Mokrane Iguer-ouada

Background: Alpha-tocopherol is a potent antioxidant involved in sperm protection particularly during cryopreservation. However, its poor solubility limits the optimal protection in aqueous solutions. Objective: The aim of this study was to enhance the solubility of α-tocopherol by the use of liposomes. Methods: The experimental approach consisted to load vitamin E in liposomes prepared by ethanol injection method and the optimization carried out by an experimental design. The optimum solution was characterized by high performance liquid chromatography and scanning electron microscope. Finely, the impact on sperm motility protection was studied by the freezing technic of bovine sperm. Results: The optimum solution was obtained when using 10.9 mg/ml of phospholipids, 1.7 mg/ml of cholesterol and 2 mg/ml of vitamin E. The liposome size was 99.86 nm, providing 78.47% of loaded efficiency. The results showed also a significant positive impact on sperm motility after hours of preservation. Conclusion: In conclusion, the current results showed the interest of liposome preparation as an alternative to enhance vitamin E solubility and to protect spermatozoa during cryopreservation.


Sign in / Sign up

Export Citation Format

Share Document