scholarly journals Table Grapes during Postharvest Storage: A Review of the Mechanisms Implicated in the Beneficial Effects of Treatments Applied for Quality Retention

2020 ◽  
Vol 21 (23) ◽  
pp. 9320
Author(s):  
Irene Romero ◽  
Maria Vazquez-Hernandez ◽  
Isaac Maestro-Gaitan ◽  
Maria Isabel Escribano ◽  
Carmen Merodio ◽  
...  

Table grape is a fruit with increasing interest due to its attributes and nutritional compounds. During recent years, new cultivars such as those without seeds and with new flavors have reached countries around the world. For this reason, postharvest treatments that retain fruit quality need to be improved. However, little is known to date about the biochemical and molecular mechanisms related with observed quality improvements. This review aims to examine existing literature on the different mechanisms. Special attention will be placed on molecular mechanisms which activate and regulate the different postharvest treatments applied in order to improve table grape quality.

1977 ◽  
Vol 17 (88) ◽  
pp. 866
Author(s):  
PR Hedberg

Table grape storage experiments were conducted in 1974 and 1975 with Nyora grapes to enable the extension of marketing periods. Grapes were packed in half-bushel (450 mm x 290 mm x 135 mm) boxes and stored in a standard cool room with various treatments. In 1974 two-stage SO2 generators, polyethylene liners and tight or loose packing were compared using grapes treated with field benomyl sprays. SO2 generators proved very effective in maintaining grape quality, particularly when used with polyethylene liners and a loose pack, enabling a storage life of four months. In 1975 the best treatment was reassessed in both wooden boxes and the cheaper cardboard box. Unwaxed cardboard boxes were inferior to wooden boxes for storing grapes. Field benomyl sprays were marginally beneficial in controlling moulds in storage. In 1975 benomyl treated grapes packed loose with a polyethylene liner and two-stage SO2 generators, were kept in an acceptable condition for six months.


2021 ◽  
Vol 22 (15) ◽  
pp. 8138
Author(s):  
Irene Romero ◽  
Maria Vazquez-Hernandez ◽  
Manuel Tornel ◽  
M. Isabel Escribano ◽  
Carmen Merodio ◽  
...  

Despite the fact that many studies have examined the effectiveness of different gaseous postharvest treatments applied at low temperature to maintain table grape quality, the use of ethanol vapor has hardly been investigated. Thus, this work has studied the effectiveness of ethanol vapor-generating sachets in the maintenance of It 681–30 table grape quality, a new cultivar, during storage at low temperature and after the shelf-life period at 20 °C. To this end, various quality assessments have been carried out and the effect of the ethanol treatment on the expression of different genes (phenylpropanoids, transcription factors, PRs, and aquaporins) was determined. The results indicated that the application of ethanol vapor reduced the total decay incidence, weight loss, and the rachis browning index in It 681–30 grapes stored at 0 °C and after the shelf-life period at 20 °C, as compared to non-treated samples. Moreover, the modulation of STS7 and the different PR genes analyzed seems to play a part in the molecular mechanisms activated to cope with fungal attacks during the postharvest of It 681–30 grapes, and particularly during the shelf-life period at 20 °C. Furthermore, the expression of aquaporin transcripts was activated in samples showing higher weight loss. Although further work is needed to elucidate the role of ethanol in table grape quality, the results obtained in this work provide new insight into the transcriptional regulation triggered by ethanol treatment.


2000 ◽  
Vol 10 (1) ◽  
pp. 159-162 ◽  
Author(s):  
J.L. Smilanick ◽  
F. Mlikota ◽  
P.L. Hartsell ◽  
J.S. Muhareb ◽  
N. Denis-Arrue

`Ruby Seedless', `Red Globe', and `Prima Red' table grapes were fumigated with the treatment schedule of the USDA-Animal Plant Health Inspection Service recommended for the control of mealybugs. Methyl bromide was applied at 64 g·m-3 (4.0 lb/1000 ft3) for 2 h at 16.1 to 18.3 °C (61 to 65 °F). The grapes were in commercial packages typical for each cultivar. After fumigation and 30 min of aeration, the grapes were stored 2 to 4 weeks at 5 °C (41 °F) and their quality assessed by evaluation of cluster rachis condition, shatter, berry cracking, decay, berry color, internal browning, bleaching injury, and firmness. None of the table grape quality parameters was significantly influenced by methyl bromide fumigation.


2008 ◽  
Vol 18 (2) ◽  
pp. 206-214 ◽  
Author(s):  
Ammon Lichter ◽  
Yohanan Zutahy ◽  
Tatiána Kaplunov ◽  
Susan Lurie

Two main methods are in use for packing table grapes (Vitis vinifera) for refrigerated storage and transport. One is to pack the grapes with a sulfur dioxide (SO2) generator pad inside a box with a perforated plastic liner and then to cool them. The other is to place the SO2 pad on the grapes, cool the pallet, and wrap it with low-density polyethylene film, leaving the bottom of the pallet open. These two methods were compared for their efficiency in maintaining grape quality and preventing decay for periods ranging from 33 to 117 days. The experiments included ‘Redglobe’ and ‘Zainy’ grapes packaged in plastic boxes and ‘Thompson Seedless’ grapes packaged in cardboard boxes. The quality of the grapes in the trials with plastic boxes was either similar in both packaging methods or better in the wrapped pallet than the liner method. The pedicels, and sometimes the rachis, showed more desiccation in the liners than in the wrapped pallets. Prevention of decay was also better with the wrapped pallets than for storage in liners. However, in the experiment with cardboard boxes, the externally wrapped boxes contained lower levels of SO2, probably because of absorption of SO2 by the cardboard, and the grapes developed more decay and rachis desiccation than in liners inside the cardboard boxes. The method of wrapping grapes after cooling them can have significant advantages over the liner method because of the faster cooling of the grapes and the use of less plastic-based, nonrecyclable materials.


2020 ◽  
Vol 99 (6) ◽  
pp. 15-31
Author(s):  
A.A. Korenkova ◽  
◽  
E.M. Mayorova ◽  
V.V. Bahmetjev ◽  
M.V. Tretyak ◽  
...  

The new coronavirus infection has posed a major public health challenge around the world, but new data on the disease raises more questions than answers. The lack of optimal therapy is a significant problem. The article examines the molecular mechanisms of SARS-CoV-2 infection and the pathogenesis of COVID-19, special attention is paid to features of pathological processes and immune responses in children. COVID-19 leads to a wide diversity of negative outcomes, many of which can persist for at least months. Many of the consequences have yet to be identified. SARS-CoV-2 may provoke autoimmune reactions. Reinfection, herd immunity, vaccines and other prevention measures are also discussed in this review.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 1278-1285
Author(s):  
Mohamed Yafout ◽  
Amine Ousaid ◽  
Ibrahim Sbai El Otmani ◽  
Youssef Khayati ◽  
Amal Ait Haj Said

The new SARS-CoV-2 belonging to the coronaviruses family has caused a pandemic affecting millions of people around the world. This pandemic has been declared by the World Health Organization as an international public health emergency. Although several clinical trials involving a large number of drugs are currently underway, no treatment protocol for COVID-19 has been officially approved so far. Here we demonstrate through a search in the scientific literature that the traditional Moroccan pharmacopoeia, which includes more than 500 medicinal plants, is a fascinating and promising source for the research of natural molecules active against SARS-CoV-2. Multiple in-silico and in-vitro studies showed that some of the medicinal plants used by Moroccans for centuries possess inhibitory activity against SARS-CoV or SARS-CoV-2. These inhibitory activities are achieved through the different molecular mechanisms of virus penetration and replication, or indirectly through stimulation of immunity. Thus, the potential of plants, plant extracts and molecules derived from plants that are traditionally used in Morocco and have activity against SARS-CoV-2, could be explored in the search for a preventive or curative treatment against COVID-19. Furthermore, safe plants or plant extracts that are proven to stimulate immunity could be officially recommended by governments as nutritional supplements.


2020 ◽  
Vol 26 (12) ◽  
pp. 1251-1262 ◽  
Author(s):  
Octavio Binvignat ◽  
Jordi Olloquequi

: The global burden of neurodegenerative diseases is alarmingly increasing in parallel to the aging of population. Although the molecular mechanisms leading to neurodegeneration are not completely understood, excitotoxicity, defined as the injury and death of neurons due to excessive or prolonged exposure to excitatory amino acids, has been shown to play a pivotal role. The increased release and/or decreased uptake of glutamate results in dysregulation of neuronal calcium homeostasis, leading to oxidative stress, mitochondrial dysfunctions, disturbances in protein turn-over and neuroinflammation. : Despite the anti-excitotoxic drug memantine has shown modest beneficial effects in some patients with dementia, to date, there is no effective treatment capable of halting or curing neurodegenerative diseases such as Alzheimer’s disease, Parkinson disease, Huntington’s disease or amyotrophic lateral sclerosis. This has led to a growing body of research focusing on understanding the mechanisms associated with the excitotoxic insult and on uncovering potential therapeutic strategies targeting these mechanisms. : In the present review, we examine the molecular mechanisms related to excitotoxic cell death. Moreover, we provide a comprehensive and updated state of the art of preclinical and clinical investigations targeting excitotoxic- related mechanisms in order to provide an effective treatment against neurodegeneration.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1002
Author(s):  
Fabiola Marino ◽  
Mariangela Scalise ◽  
Eleonora Cianflone ◽  
Luca Salerno ◽  
Donato Cappetta ◽  
...  

Over the years strong evidence has been accumulated showing that aerobic physical exercise exerts beneficial effects on the prevention and reduction of cardiovascular risk. Exercise in healthy subjects fosters physiological remodeling of the adult heart. Concurrently, physical training can significantly slow-down or even reverse the maladaptive pathologic cardiac remodeling in cardiac diseases, improving heart function. The underlying cellular and molecular mechanisms of the beneficial effects of physical exercise on the heart are still a subject of intensive study. Aerobic activity increases cardiovascular nitric oxide (NO) released mainly through nitric oxidase synthase 3 activity, promoting endothelium-dependent vasodilation, reducing vascular resistance, and lowering blood pressure. On the reverse, an imbalance between increasing free radical production and decreased NO generation characterizes pathologic remodeling, which has been termed the “nitroso-redox imbalance”. Besides these classical evidence on the role of NO in cardiac physiology and pathology, accumulating data show that NO regulate different aspects of stem cell biology, including survival, proliferation, migration, differentiation, and secretion of pro-regenerative factors. Concurrently, it has been shown that physical exercise generates physiological remodeling while antagonizes pathologic remodeling also by fostering cardiac regeneration, including new cardiomyocyte formation. This review is therefore focused on the possible link between physical exercise, NO, and stem cell biology in the cardiac regenerative/reparative response to physiological or pathological load. Cellular and molecular mechanisms that generate an exercise-induced cardioprotective phenotype are discussed in regards with myocardial repair and regeneration. Aerobic training can benefit cells implicated in cardiovascular homeostasis and response to damage by NO-mediated pathways that protect stem cells in the hostile environment, enhance their activation and differentiation and, in turn, translate to more efficient myocardial tissue regeneration. Moreover, stem cell preconditioning by and/or local potentiation of NO signaling can be envisioned as promising approaches to improve the post-transplantation stem cell survival and the efficacy of cardiac stem cell therapy.


2021 ◽  
Vol 6 (2) ◽  
pp. 48
Author(s):  
Elisa Innocenzi ◽  
Ida Cariati ◽  
Emanuela De Domenico ◽  
Erika Tiberi ◽  
Giovanna D’Arcangelo ◽  
...  

Aerobic exercise (AE) is known to produce beneficial effects on brain health by improving plasticity, connectivity, and cognitive functions, but the underlying molecular mechanisms are still limited. Neurexins (Nrxns) are a family of presynaptic cell adhesion molecules that are important in synapsis formation and maturation. In vertebrates, three-neurexin genes (NRXN1, NRXN2, and NRXN3) have been identified, each encoding for α and β neurexins, from two independent promoters. Moreover, each Nrxns gene (1–3) has several alternative exons and produces many splice variants that bind to a large variety of postsynaptic ligands, playing a role in trans-synaptic specification, strength, and plasticity. In this study, we investigated the impact of a continuous progressive (CP) AE program on alternative splicing (AS) of Nrxns on two brain regions: frontal cortex (FC) and hippocampus. We showed that exercise promoted Nrxns1–3 AS at splice site 4 (SS4) both in α and β isoforms, inducing a switch from exon-excluded isoforms (SS4−) to exon-included isoforms (SS4+) in FC but not in hippocampus. Additionally, we showed that the same AE program enhanced the expression level of other genes correlated with synaptic function and plasticity only in FC. Altogether, our findings demonstrated the positive effect of CP AE on FC in inducing molecular changes underlying synaptic plasticity and suggested that FC is possibly a more sensitive structure than hippocampus to show molecular changes.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Yuefei Jin ◽  
Wangquan Ji ◽  
Haiyan Yang ◽  
Shuaiyin Chen ◽  
Weiguo Zhang ◽  
...  

AbstractOn 12 March 2020, the outbreak of coronavirus disease 2019 (COVID-19) was declared a pandemic by the World Health Organization. As of 4 August 2020, more than 18 million confirmed infections had been reported globally. Most patients have mild symptoms, but some patients develop respiratory failure which is the leading cause of death among COVID-19 patients. Endothelial cells with high levels of angiotensin-converting enzyme 2 expression are major participants and regulators of inflammatory reactions and coagulation. Accumulating evidence suggests that endothelial activation and dysfunction participate in COVID-19 pathogenesis by altering the integrity of vessel barrier, promoting pro-coagulative state, inducing endothelial inflammation, and even mediating leukocyte infiltration. This review describes the proposed cellular and molecular mechanisms of endothelial activation and dysfunction during COVID-19 emphasizing the principal mediators and therapeutic implications.


Sign in / Sign up

Export Citation Format

Share Document