scholarly journals Effects of Eltrombopag on In Vitro Macrophage Polarization in Pediatric Immune Thrombocytopenia

2020 ◽  
Vol 22 (1) ◽  
pp. 97
Author(s):  
Alessandra Di Paola ◽  
Giuseppe Palumbo ◽  
Pietro Merli ◽  
Maura Argenziano ◽  
Chiara Tortora ◽  
...  

Immune Thrombocytopenia (ITP) is an autoimmune disease characterized by autoantibodies-mediated platelet destruction, a prevalence of M1 pro-inflammatory macrophage phenotype and an elevated T helper 1 and T helper 2 lymphocytes (Th1/Th2) ratio, resulting in impairment of inflammatory profile and immune response. Macrophages are immune cells, present as pro-inflammatory classically activated macrophages (M1) or as anti-inflammatory alternatively activated macrophages (M2). They have a key role in ITP, acting both as effector cells, phagocytizing platelets, and, as antigen presenting cells, stimulating auto-antibodies against platelets production. Eltrombopag (ELT) is a thrombopoietin receptor agonist licensed for chronic ITP to stimulate platelet production. Moreover, it improves T and B regulatory cells functions, suppresses T-cells activity, and inhibits monocytes activation. We analyzed the effect of ELT on macrophage phenotype polarization, proposing a new possible mechanism of action. We suggest it as a mediator of macrophage phenotype switch from the M1 pro-inflammatory type to the M2 anti-inflammatory one in paediatric patients with ITP, in order to reduce inflammatory state and restore the immune system function. Our results provide new insights into the therapy and the management of ITP, suggesting ELT also as immune-modulating drug.

2017 ◽  
Vol 37 (5) ◽  
pp. 486-495 ◽  
Author(s):  
X Li ◽  
F Wu ◽  
L Xue ◽  
B Wang ◽  
J Li ◽  
...  

Macrophages, especially their activation state, are closely related to the progression of neurotoxicity. Classically activated macrophages (M1) are proinflammatory effectors, while alternatively activated macrophages (M2) exhibit anti-inflammatory properties. As a powerful addictive psychostimulant drug, coupled with its neurotoxicity, methamphetamine (Meth) abuse may lead to long-lasting abnormalities in the neuronal system. The present study investigated the effect of Meth at subtoxic concentration on macrophage activation state and its underlying toxicity to neuronal cells. PC12 and Murine RAW264.7 cells were coincubated with Meth to test its toxicity. 3-(4,5-Dimethylthiazol)-2,5-diphenyltetrazolium-bromide, enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blot assays were performed to evaluate the toxicity, cytokine secretion, gene, and protein expression. Results showed that cytotoxicity was enhanced on PC12 cells after coculturing with RAW264.7 stimulated with Meth. RAW264.7 macrophages tended to switch to the M1 phenotype, releasing more nitric oxide and proinflammatory cytokines, including tumor necrosis factor α (TNFα), interleukin (IL)-12, and IL-1β, while decreasing the release of anti-inflammatory cytokine IL-10 after treatment with Meth. Meth upregulated the gene expression of IL-6, IL-1β, and TNFα and downregulated the expression of Arg-1, IL-10, and KLF4. Meth could also upregulate the protein expression of IL-1β and TNF α and downregulate the expression of Arg-1 and KLF4. However, the abovementioned effects induced by Meth were abolished by the addition of dopamine receptor D3 antagonist. In conclusion, our study demonstrated that Meth promoted macrophage polarization from M0 to M1 and enhanced inflammatory response, which provided the scientific rationale for the neurotoxicity caused by the chronic use of Meth.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 420 ◽  
Author(s):  
Gavriela Feketea ◽  
Corina I Bocsan ◽  
Cristian Popescu ◽  
Mihaela Gaman ◽  
Luminita A Stanciu ◽  
...  

There is an imbalance in asthma between classically activated macrophages (M1 cells) and alternatively activated macrophages (M2 cells) in favor of the latter. MicroRNAs (miRNAs) play a critical role in regulating macrophage proliferation and differentiation and control the balance of M1 and M2 macrophage polarization, thereby controlling immune responses. Here we review the current published data concerning miRNAs with known correlation to a specific human macrophage phenotype and polarization, and their association with adult asthma. MiRNA-targeted therapy is still in the initial stages, but clinical trials are under recruitment or currently running for some miRNAs in other diseases. Regulating miRNA expression via their upregulation or downregulation could show potential as a novel therapy for improving treatment efficacy in asthma.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 211
Author(s):  
Sona Kauerova ◽  
Hana Bartuskova ◽  
Barbora Muffova ◽  
Libor Janousek ◽  
Jiri Fronek ◽  
...  

Statins represent one of the most widely used classes of drugs in current medicine. In addition to a substantial decrease in atherogenic low density lipoprotein (LDL) particle concentrations, several large trials have documented their potent anti-inflammatory activity. Based on our preliminary data, we showed that statins are able to decrease the proportion of pro-inflammatory macrophages (CD14+16+CD36high) in visceral adipose tissue in humans. In the present study including 118 healthy individuals (living kidney donors), a very close relationship between the pro-inflammatory macrophage proportion and LDL cholesterol levels was found. This was confirmed after adjustment for the most important risk factors. The effect of statins on the proportion of pro-inflammatory macrophages was also confirmed in an experimental model of the Prague hereditary hypercholesterolemia rat. A direct anti-inflammatory effect of fluvastatin on human macrophage polarization in vitro was documented. Based on modifying the LDL cholesterol concentrations, statins are suggested to decrease the cholesterol inflow through the lipid raft of macrophages in adipose tissue and hypercholesterolemia to enhance the pro-inflammatory macrophage phenotype polarization. On the contrary, due to their opposite effect, statins respond with anti-inflammatory activity, affecting the whole organism.


2002 ◽  
Vol 9 (3) ◽  
pp. 151-159 ◽  
Author(s):  
Geert Raes ◽  
Wim Noël ◽  
Alain Beschin ◽  
Lea Brys ◽  
Patrick de Baetselier ◽  
...  

Although it is well-established that macrophages can occur in distinct activation states, the molecular characteristics of differentially activated macrophages, and particularly those of alternatively activated macrophages (aaMφ), are still poorly unraveled. Recently, we demonstrated that the expression of FIZZ1 and Ym is induced in aaMφ as compared with classically activated macrophages (caMφ), elicitedin vitroor developedin vivoduring infection withTrypanosoma brucei brucei. In the present study, we analyzed the expression of FIZZ1 and Ym in caMφ and aaMφ elicited duringTrypanosoma congolenseinfection and show that the use of FIZZ1 and Ym for the identification of aaMφ is not limited toT. b. bruceiinfection and is independent of the organ sources from which macrophages are obtained. We also demonstrate that FIZZ1 can be used to discriminate between different populations of aaMφ. Furthermore, we studied the effects of various stimuli, and combinations thereof, on the expression of FIZZ1 and Ym in macrophages from different mouse strains and demonstrate that regulation of the expression of FIZZ1 and Ym in macrophages is not dependent on the mouse strain. Finally, we show that these genes can be used to monitor the macrophage activation status without the need to obtain pure macrophage populations.


2004 ◽  
Vol 122 (3) ◽  
pp. 359-369 ◽  
Author(s):  
Leonie A. Boven ◽  
Marjan van Meurs ◽  
Rolf G. Boot ◽  
Atul Mehta ◽  
Louis Boon ◽  
...  

2011 ◽  
Vol 140 (5) ◽  
pp. S-19
Author(s):  
Michelle Taylor ◽  
Vandana Gambhir ◽  
Curtis Noordhof ◽  
Oliver Jones ◽  
Shu-Mei He ◽  
...  

2019 ◽  
Vol 33 (2) ◽  
pp. 889-896 ◽  
Author(s):  
Sharon Witonsky ◽  
Virginia Buechner‐Maxwell ◽  
Amy Santonastasto ◽  
Robert Pleasant ◽  
Stephen Werre ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Rui-zhen Sun ◽  
Ying Fan ◽  
Xiao Liang ◽  
Tian-tian Gong ◽  
Qi Wang ◽  
...  

Foam cell formation and macrophage polarization are involved in the pathologic development of atherosclerosis, one of the most important human diseases affecting large and medium artery walls. This study was designed to assess the effects of rapamycin and FTY720 (fingolimod) on macrophages and foam cells. Mouse peritoneal macrophages were collected and treated with rapamycin and FTY720 to study autophagy, polarization, and lipid accumulation. Next, foam cells were formed by oxidizing low-density lipoprotein to observe changes in lipid accumulation, autophagy, and polarization in rapamycin-treated or FTY720-treated foam cells. Lastly, foam cells that had been treated with rapamycin and FTY720 were evaluated for sphingosine 1-phosphate receptor (S1prs) expression. Autophagy microtubule-associated protein 1 light chain 3- (LC3-) II was increased, and classically activated macrophage phenotype markers interleukin- (IL-) 6, cyclooxygenase-2 (COX2), and inducible nitric oxide synthase (iNOS) were increased, whereas alternatively activated macrophage phenotype markers transforming growth factor- (TGF-)β, arginase 1 (Arg1), and mannose receptor C-type 1 (Mrc1) were decreased by rapamycin in peritoneal macrophages. LC3-II was also obviously enhanced, though polarization markers were unchanged in rapamycin-treated foam cells. Moreover, lipid accumulation was inhibited in rapamycin-treated macrophage cells but was unchanged in rapamycin-treated foam cells. For FTY720, LC3-II did not change, whereas TGF-β, Arg1 and Mrc1 were augmented, and IL-6 was suppressed in macrophages. However, LC3-II was increased, and TGF-β, ARG1 and MRC1 were strikingly augmented, whereas IL-6, COX2 and iNOS could be suppressed in foam cells. Furthermore, lipid accumulation was alleviated in FTY720-treated foam cells. Additionally, S1pr1 was markedly decreased in foam cells (P< .05); S1pr2, S1pr3, S1pr4 and S1pr5 were unchanged in rapamycin-treated foam cells. In FTY720-treated foam cells, S1pr3 and S1pr4 were decreased, and S1pr1, S1pr2 and S1pr5 were unchanged. Therefore, we deduced that rapamycin stimulated classically activated macrophages and supressed early atherosclerosis. Rapamycin may also stabilize artery plaques by preventing apoptosis and S1PR1 in advanced atherosclerosis. FTY720 allowed transformation of foam cells into alternatively activated macrophages through the autophagy pathway to alleviate advanced atherosclerosis.


2020 ◽  
Vol 40 (9) ◽  
pp. 2070-2083
Author(s):  
Lin-Lin Wei ◽  
Ning Ma ◽  
Kun-Yi Wu ◽  
Jia-Xing Wang ◽  
Teng-Yue Diao ◽  
...  

Objective: Emerging evidence suggests that C3aR (C3a anaphylatoxin receptor) signaling has protective roles in various inflammatory-related diseases. However, its role in atherosclerosis has been unknown. The purpose of the study was to investigate the possible protective role of C3aR in aortic atherosclerosis and explore molecular and cellular mechanisms involved in the protection. Approach and Results: C3ar −/− /Apoe −/− mice were generated by cross-breeding of atherosclerosis-prone Apoe −/− mice and C3ar −/− mice. C3ar −/− /Apoe −/− mice and Apoe −/− mice (as a control) underwent high-fat diet for 16 weeks were assessed for (1) atherosclerotic plaque burden, (2) aortic tissue inflammation, (3) recruitment of CD11b + leukocytes into atherosclerotic lesions, and (4) systemic inflammatory responses. Compared with Apoe −/− mice, C3ar −/− /Apoe −/− mice developed more severe atherosclerosis. In addition, C3ar −/− /Apoe −/− mice have increased local production of proinflammatory mediators (eg, CCL2 [chemokine (C-C motif) ligand 2], TNF [tumor necrosis factor]-α) and infiltration of monocyte/macrophage in aortic tissue, and their lesional macrophages displayed an M1-like phenotype. Local pathological changes were associated with enhanced systemic inflammatory responses (ie, elevated plasma levels of CCL2 and TNF-α, increased circulating inflammatory cells). In vitro analyses using peritoneal macrophages showed that C3a stimulation resulted in upregulation of M2-associated signaling and molecules, but suppression of M1-associated signaling and molecules, supporting the roles of C3a/C3aR axis in mediating anti-inflammatory response and promoting M2 macrophage polarization. Conclusions: Our findings demonstrate a protective role for C3aR in the development of atherosclerosis and suggest that C3aR confers the protection through C3a/C3aR axis–mediated negative regulation of proinflammatory responses and modulation of macrophage toward the anti-inflammatory phenotype.


Sign in / Sign up

Export Citation Format

Share Document