scholarly journals Chemical Evaluation of Eumelanin Maturation by ToF-SIMS and Alkaline Peroxide Oxidation HPLC Analysis

2020 ◽  
Vol 22 (1) ◽  
pp. 161
Author(s):  
Martin Jarenmark ◽  
Peter Sjövall ◽  
Shosuke Ito ◽  
Kazumasa Wakamatsu ◽  
Johan Lindgren

Residual melanins have been detected in multimillion-year-old animal body fossils; however, confident identification and characterization of these natural pigments remain challenging due to loss of chemical signatures during diagenesis. Here, we simulate this post-burial process through artificial maturation experiments using three synthetic and one natural eumelanin exposed to mild (100 °C/100 bar) and harsh (250 °C/200 bar) environmental conditions, followed by chemical analysis employing alkaline hydrogen peroxide oxidation (AHPO) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Our results show that AHPO is sensitive to changes in the melanin molecular structure already during mild heat and pressure treatment (resulting, e.g., in increased C-C cross-linking), whereas harsh maturation leads to extensive loss of eumelanin-specific chemical markers. In contrast, negative-ion ToF-SIMS spectra are considerably less affected by mild maturation conditions, and eumelanin-specific features remain even after harsh treatment. Detailed analysis of ToF-SIMS spectra acquired prior to experimental treatment revealed significant differences between the investigated eumelanins. However, systematic spectral changes upon maturation reduced these dissimilarities, indicating that intense heat and pressure treatment leads to the formation of a common, partially degraded, eumelanin molecular structure. Our findings elucidate the complementary nature of AHPO and ToF-SIMS during chemical characterization of eumelanin traces in fossilized organismal remains.

2019 ◽  
Vol 9 (17) ◽  
pp. 3452 ◽  
Author(s):  
Andrea Atrei ◽  
Andrea Scala ◽  
Marco Giamello ◽  
Marianna Uva ◽  
Riccardo Maria Pulselli ◽  
...  

The chemical characterization of gilding decorations in works of art is fundamental in order to elucidate the techniques and materials used by the artists. In the present work we investigated by a combination of bulk and surface sensitive methods the composition and micro stratigraphy of the gilding laminae in the wall painting of the 14th century “La Maestà”, the masterpiece of Simone Martini. The aim of this study was to determine the composition of the gilding leaves and of the adhesive organic materials used to glue the metallic decorations to the wall painting. Due to the altered state of the samples we could not univocally identify the nature of the adhesive materials. Time of flight secondary ion mass spectrometry measurements showed that the gilding layers consisted of a gold leaf which was laid either directly on a preparation layer or on a tin lamina. The high sensitivity of ToF-SIMS and its spatial resolution allowed us to find traces of silver in the gold leaves and in the tin laminae which were not revealed by energy dispersive X-ray analysis.


BioResources ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. 5581-5599
Author(s):  
Hong Yan Mou ◽  
Shubin Wu ◽  
Pedro Fardim

Time-of-flight secondary-ion mass spectrometry (ToF-SIMS) is an advanced surface-sensitive technique that can provide both spectral and imaging information about materials. Recently, ToF-SIMS has been used for advanced studies of lignocellulosic biomass. In the current article, the application of ToF-SIMS to the characterization of the surface chemical composition and distribution of biomass components in lignocelluloses is reviewed. Moreover, extended applications of ToF-SIMS in the study of pretreatments, modification of biomaterials, and enzyme activity of lignocellulosic materials are presented and discussed. Sample preparation prior to ToF-SIMS analysis and subsequent interpretation of results is a critical factor in ensuring reliable results. The focus of this review is to give a comprehensive understanding of and offer new hints about the effects of processing conditions on the surface chemistry of lignocellulosic biomass.


2020 ◽  
Vol 35 (12) ◽  
pp. 2997-3006
Author(s):  
Agnieszka Priebe ◽  
Tianle Xie ◽  
Laszlo Pethö ◽  
Johann Michler

Enhancing the spatial resolution of TOF-SIMS, which provides 3D elemental distribution in combination with high sensitivity and molecular information, is currently one of the hottest topics in the field of chemical analysis at the nanoscale.


1996 ◽  
Vol 11 (1) ◽  
pp. 63-71 ◽  
Author(s):  
A. Ureña ◽  
J. M. Gómez de Salazar ◽  
J. J. Martín ◽  
J. Quiñones

This paper describes a new application of two complementary surface characterization techniques to study solid-state bonding in an Al–Li alloy. Through the two mentioned techniques, Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS), important findings about what takes place in the bond interface have been determined. These findings enclose both the formation of discontinuous mixed oxides and the evolution of Li through the bond line and into theadjacent diffusion affected zones. Homogenization of Li and Cu alloyelements has been detected even in those cases where a metallic interlayer was used to favor the union.


Sign in / Sign up

Export Citation Format

Share Document