scholarly journals Salivary Outer Membrane Vesicles and DNA Methylation of Small Extracellular Vesicles as Biomarkers for Periodontal Status: A Pilot Study

2021 ◽  
Vol 22 (5) ◽  
pp. 2423
Author(s):  
Pingping Han ◽  
Peter Mark Bartold ◽  
Carlos Salomon ◽  
Sašo Ivanovski

Periodontitis is an inflammatory disease, associated with a microbial dysbiosis. Early detection using salivary small extracellular vesicles (sEVs) biomarkers may facilitate timely prevention. sEVs derived from different species (i.e., humans, bacteria) are expected to circulate in saliva. This pilot study recruited 22 participants (seven periodontal healthy, seven gingivitis and eight periodontitis) and salivary sEVs were isolated using the size-exclusion chromatography (SEC) method. The healthy, gingivitis and periodontitis groups were compared in terms of salivary sEVs in the CD9+ sEV subpopulation, Gram-negative bacteria-enriched lipopolysaccharide (LPS+) outer membrane vesicles (OMVs) and global DNA methylation pattern of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) and N6-Methyladenosine (m6dA). It was found that LPS+ OMVs, global 5mC methylation and four periodontal pathogens (T. denticola, E. corrodens, P. gingivalis and F. nucleatum) that secreted OMVs were significantly increased in periodontitis sEVs compared to those from healthy groups. These differences were more pronounced in sEVs than the whole saliva and were more superior in distinguishing periodontitis than gingivitis, in comparison to healthy patients. Of note, global 5mC hypermethylation in salivary sEVs can distinguish periodontitis patients from both healthy controls and gingivitis patients with high sensitivity and specificity (AUC = 1). The research findings suggest that assessing global sEV methylation may be a useful biomarker for periodontitis.

2021 ◽  
Vol 22 (9) ◽  
pp. 4823
Author(s):  
María Fernanda González ◽  
Paula Díaz ◽  
Alejandra Sandoval-Bórquez ◽  
Daniela Herrera ◽  
Andrew F. G. Quest

Extracellular vesicles (EVs) are cell-derived vesicles important in intercellular communication that play an essential role in host-pathogen interactions, spreading pathogen-derived as well as host-derived molecules during infection. Pathogens can induce changes in the composition of EVs derived from the infected cells and use them to manipulate their microenvironment and, for instance, modulate innate and adaptive inflammatory immune responses, both in a stimulatory or suppressive manner. Gastric cancer is one of the leading causes of cancer-related deaths worldwide and infection with Helicobacter pylori (H. pylori) is considered the main risk factor for developing this disease, which is characterized by a strong inflammatory component. EVs released by host cells infected with H. pylori contribute significantly to inflammation, and in doing so promote the development of disease. Additionally, H. pylori liberates vesicles, called outer membrane vesicles (H. pylori-OMVs), which contribute to atrophia and cell transformation in the gastric epithelium. In this review, the participation of both EVs from cells infected with H. pylori and H. pylori-OMVs associated with the development of gastric cancer will be discussed. By deciphering which functions of these external vesicles during H. pylori infection benefit the host or the pathogen, novel treatment strategies may become available to prevent disease.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 428
Author(s):  
Marianne Zaruba ◽  
Lena Roschitz ◽  
Haider Sami ◽  
Manfred Ogris ◽  
Wilhelm Gerner ◽  
...  

Extracellular vesicles produced by different types of cells have recently attracted great attention, not only for their role in physiology and pathology, but also because of the emerging applications in gene therapy, vaccine production and diagnostics. Less well known than their eukaryotic counterpart, also bacteria produce extracellular vesicles, in the case of the Gram-negative E. coli the main species is termed outer membrane vesicles (OMVs). In this study, we show for the first time the functional surface modification of E. coli OMVs with glycosylphosphatidylinositol (GPI)-anchored protein, exploiting a process variably described as molecular painting or protein engineering in eukaryotic membranes, whereby the lipid part of the GPI anchor inserts in cell membranes. By transferring the process to bacterial vesicles, we can generate a hybrid of perfectly eukaryotic proteins (in terms of folding and post-translational modifications) on a prokaryotic platform. We could demonstrate that two different GPI proteins can be displayed on the same OMV. In addition to fluorescent marker proteins, cytokines, growth factors and antigens canb be potentially transferred, generating a versatile modular platform for a novel vaccine strategy.


PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0151967 ◽  
Author(s):  
Jessica D. Cecil ◽  
Neil M. O’Brien-Simpson ◽  
Jason C. Lenzo ◽  
James A. Holden ◽  
Yu-Yen Chen ◽  
...  

2021 ◽  
Author(s):  
Quan Li ◽  
Zheng Li ◽  
Xia Fei ◽  
Yichen Tian ◽  
Guodong Zhou ◽  
...  

Abstract The Tol-Pal system of Gram-negative bacteria is necessary for maintaining outer membrane integrity. It is a multiprotein complex of five envelope proteins, TolQ, TolR, TolA, TolB, and Pal. These proteins were first investigated in E. coli, and subsequently been identified in many other bacterial genera. However, the function of the Tol-Pal system in Salmonella Choleraesuis pathogenesis is still unclear. Here, we reported the role of three of these proteins in the phenotype and biology of S. Choleraesuis. We found that mutations in tolA, tolB, and tolR caused severe damage to the cell wall, which was supported by observing the microstructure of spherical forms, long chains, flagella defects, and membrane blebbing. We confirmed that all the mutants significantly decreased S. Choleraesuis survival when exposed to sodium deoxycholate and exhibited a high sensitivity to vancomycin, which may be explained by the disruption of envelope integrity. In addition, tolA, tolB, and tolR mutants displayed attenuated virulence in a mouse infection model. This could be interpreted as a series of defective phenotypes in the mutants, such as severe defects in envelope integrity, growth, and motility. Further investigation showed that all the genes participate in outer membrane vesicles (OMVs) biogenesis. Interestingly, immunization with OMVs from ΔtolB efficiently enhanced murine viability in contrast to OMVs from the wild-type S. Choleraesuis, suggesting its potential use in vaccination strategies. Collectively, this study provides an insight into the biological role of the S. Choleraesuis Tol-Pal system.


2017 ◽  
Vol 96 (4) ◽  
pp. 458-466 ◽  
Author(s):  
J.-W. Choi ◽  
S.-C. Kim ◽  
S.-H. Hong ◽  
H.-J. Lee

2019 ◽  
Author(s):  
Jiajun Wang ◽  
Rémi Terrasse ◽  
Jayesh Arun Bafna ◽  
Lorraine Benier ◽  
Mathias Winterhalter

Multi-drug resistance in Gram-negative bacteria is often associated with low permeability of the outer membrane. To investigate the role of membrane channels in the uptake of antibiotics, we extract, purify and reconstitute them into artificial planar membranes. To avoid this time-consuming procedure, here we show a robust approach using fusion of native outer membrane vesicles (OMV) into planar lipid bilayer which moreover allows also to some extend the characterization of membrane protein channels in their native environment. Two major membrane channels from <i>Escherichia coli</i>, OmpF and OmpC, were overexpressed from the host and the corresponding OMVs were collected. Each OMV fusion revealed surprisingly single or only few channel activities. The asymmetry of the OMV´s translates after fusion into the lipid membrane with the LPS dominantly present at the side of OMV addition. Compared to conventional reconstitution methods, the channels fused from OMVs containing LPS have similar conductance but a much broader distribution. The addition of Enrofloxacin on the LPS side yields somewhat higher association (<i>k<sub>on</sub></i>) and lower dissociation (<i>k<sub>off</sub></i>) rates compared to LPS-free reconstitution. We conclude that using outer membrane vesicles is a fast and easy approach for functional and structural studies of membrane channels in the native membrane.


Sign in / Sign up

Export Citation Format

Share Document