scholarly journals Coaxial Alginate Hydrogels: From Self-Assembled 3D Cellular Constructs to Long-Term Storage

2021 ◽  
Vol 22 (6) ◽  
pp. 3096
Author(s):  
Oleksandr Gryshkov ◽  
Vitalii Mutsenko ◽  
Dmytro Tarusin ◽  
Diaa Khayyat ◽  
Ortwin Naujok ◽  
...  

Alginate as a versatile naturally occurring biomaterial has found widespread use in the biomedical field due to its unique features such as biocompatibility and biodegradability. The ability of its semipermeable hydrogels to provide a favourable microenvironment for clinically relevant cells made alginate encapsulation a leading technology for immunoisolation, 3D culture, cryopreservation as well as cell and drug delivery. The aim of this work is the evaluation of structural properties and swelling behaviour of the core-shell capsules for the encapsulation of multipotent stromal cells (MSCs), their 3D culture and cryopreservation using slow freezing. The cells were encapsulated in core-shell capsules using coaxial electrospraying, cultured for 35 days and cryopreserved. Cell viability, metabolic activity and cell–cell interactions were analysed. Cryopreservation of MSCs-laden core-shell capsules was performed according to parameters pre-selected on cell-free capsules. The results suggest that core-shell capsules produced from the low viscosity high-G alginate are superior to high-M ones in terms of stability during in vitro culture, as well as to solid beads in terms of promoting formation of viable self-assembled cellular structures and maintenance of MSCs functionality on a long-term basis. The application of 0.3 M sucrose demonstrated a beneficial effect on the integrity of capsules and viability of formed 3D cell assemblies, as compared to 10% dimethyl sulfoxide (DMSO) alone. The proposed workflow from the preparation of core-shell capsules with self-assembled cellular structures to the cryopreservation appears to be a promising strategy for their off-the-shelf availability.

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 77
Author(s):  
Elena O. Vidyagina ◽  
Nikolay N. Kharchenko ◽  
Konstantin A. Shestibratov

Axillary buds of in vitro microshoots were successfully frozen at –196 °C by the one-step freezing method using the protective vitrification solution 2 (PVS2). Microshoots were taken from 11 transgenic lines and three wild type lines. Influence of different explant pretreatments were analyzed from the point of their influence towards recovery after cryopreservation. It was found out that the use of axillary buds as explants after removal of the apical one increases recovery on average by 8%. The cultivation on growth medium of higher density insignificantly raises the regenerants survival rate. Pretreatment of the osmotic fluid (OF) shows the greatest influence on the survival rate. It leads to the increase in survival rate by 20%. The cryopreservation technology providing regenerants average survival rate of 83% was developed. It was based on the experimental results obtained with explant pretreatment. Incubation time in liquid nitrogen did not affect the explants survival rate after thawing. After six months cryostorage of samples their genetic variability was analyzed. Six variable simple sequence repeat (SSR) loci were used to analyze genotype variability after the freezing-thawing procedure. The microsatellite analysis showed the genetic status identity of plants after cryopreservation and of the original genotypes. The presence of the recombinant gene in the transgenic lines after cryostorage were confirmed so as the interclonal variation in the growth rate under greenhouse conditions. The developed technique is recommended for long-term storage of various breeding and genetically modified lines of aspen plants, as it provides a high percentage of explants survival with no changes in genotype.


2017 ◽  
Vol 107 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Wayne M. Jurick ◽  
Otilia Macarisin ◽  
Verneta L. Gaskins ◽  
Eunhee Park ◽  
Jiujiang Yu ◽  
...  

Botrytis cinerea causes gray mold and is an economically important postharvest pathogen of fruit, vegetables, and ornamentals. Fludioxonil-sensitive B. cinerea isolates were collected in 2011 and 2013 from commercial storage in Pennsylvania. Eight isolates had values for effective concentrations for inhibiting 50% of mycelial growth of 0.0004 to 0.0038 μg/ml for fludioxonil and were dual resistant to pyrimethanil and thiabendazole. Resistance was generated in vitro, following exposure to a sublethal dose of fludioxonil, in seven of eight dual-resistant B. cinerea isolates. Three vigorously growing B. cinerea isolates with multiresistance to postharvest fungicides were further characterized and found to be osmosensitive and retained resistance in the absence of selection pressure. A representative multiresistant B. cinerea strain caused decay on apple fruit treated with postharvest fungicides, which confirmed the in vitro results. The R632I mutation in the Mrr1 gene, associated with fludioxonil resistance in B. cinerea, was not detected in multipostharvest fungicide-resistant B. cinerea isolates, suggesting that the fungus may be using additional mechanisms to mediate resistance. Results from this study show for the first time that B. cinerea with dual resistance to pyrimethanil and thiabendazole can also rapidly develop resistance to fludioxonil, which may pose control challenges in the packinghouse environment and during long-term storage.


Lab on a Chip ◽  
2017 ◽  
Vol 17 (17) ◽  
pp. 2941-2950 ◽  
Author(s):  
Yujuan Zhu ◽  
Li Wang ◽  
Hao Yu ◽  
Fangchao Yin ◽  
Yaqing Wang ◽  
...  

We present a simple and high throughput manner to generate brain organoids in situ from human induced pluripotent stem cells on micropillar arrays and to investigate long-term brain organogenesis in 3D culture in vitro.


Author(s):  
Alice H. Huang ◽  
Robert L. Mauck

Articular cartilage lines the surfaces of joints and transmits the forces arising from locomotion. The poor ability of cartilage to self-repair has motivated efforts to engineer replacements that recapitulate this load-bearing function. While chondrocyte-laden constructs have been generated with near-native mechanical properties, limitations in chondrocyte availability may preclude their clinical use. Therefore, mesenchymal stem cells (MSCs), which can undergo chondrogenesis in 3D culture, have emerged as a promising alternative [1]. However, although MSCs deposit a cartilaginous matrix, mechanical and biochemical properties are lower than those achieved with chondrocytes [1, 2]. Using microarray analysis, we recently showed that limitations in functional MSC chondrogenesis may stem from incomplete or incorrect molecular induction; molecular differences were observed between donor-matched differentiated chondrocytes and newly differentiated MSCs over 8 weeks of culture [2]. While some genes remained consistently low in MSCs compared to chondrocytes, others gradually increased with time, approaching chondrocyte levels by 8 weeks. As these molecules may underlie the functional disparity between chondrocytes and MSCs, we hypothesized that longer culture durations may improve MSC-seeded construct properties and chondrogenesis. To test this hypothesis, we characterized the evolution of functional properties of MSC- and chondrocyte-seeded constructs over 4 months of in vitro culture in pro-chondrogenic medium.


Plant Disease ◽  
2020 ◽  
Author(s):  
Leilane Silveira D' Ávila ◽  
Marta Cristina Corsi Filippi ◽  
Adalberto Corrêa Café-Filho

The long-term dynamics of fungicide resistance of the rice blast fungus Pyricularia oryzae was monitored by examining the reaction of the fungal field isolates, collected over a period of 26 years, to the active ingredients of commercially relevant fungicides. The in vitro sensitivity of all isolates was measured against Quinone outside inhibitors (QoI), Melanin biosynthesis inhibitors (MBI) and Sterol demethylation inhibitor (DMI) fungicides, namely azoxystrobin (QoI), tricyclazole (MBI), tebuconazole (DMI), and trifloxystrobin + tebuconazole (QoI + DMI). Over the 26-year collection period, a gradual rise in the EC50 estimates for mycelial growth sensitivity was observed for all fungicides, but most strikingly for azoxystrobin. A rise in conidial germination and appressorium formation was also noted, most markedly for azoxystrobin. Consistently, the earlier isolates were much more sensitive to the active ingredients than the more contemporary isolates. The sequencing of the amplified cyt b fragment distinguished two haplotypes, H1 and H2. Haplotype H1 (six isolates) contained the G to C transversion at codon 143 (resulting in change G143A), linked to the resistant phenotype QoI-R. Haplotype H2 (40 isolates), gathered the isolates sensitive to QoI. This work documents the gradual rise in the frequency of fungicide resistant isolates in Pyricularia oryzae rice populations on a long-term basis.


2016 ◽  
Vol 9 (3) ◽  
pp. 379-388 ◽  
Author(s):  
N. De Clercq ◽  
G. Vlaemynck ◽  
E. Van Pamel ◽  
D. Colman ◽  
M. Heyndrickx ◽  
...  

Penicillium expansum is the principal cause of blue mould rot and associated production of patulin, a weak mycotoxin, in apples worldwide. P. expansum growth and patulin production is observed during improper or long-term storage of apples. We have investigated the extent to which each successive step during long-term storage contributes to patulin production in various P. expansum isolates. Fungal isolates collected on apples from several Belgian orchards/industries were identified to species level. Random amplification of polymorphic DNA (RAPD) analysis and β-tubulin gene sequencing identified P. expansum and Penicillium solitum as the most prevalent Penicillium species associated with Belgian apples. All 27 P. expansum isolates and eight reference strains were characterised for their patulin production capacity on apple puree agar medium for five days under classical constant temperature and atmosphere conditions. Under these conditions, a large range of patulin production levels was observed. Based on this phenotypic diversity, five P. expansum isolates and one reference strain were selected for in vitro investigation of patulin production under representative conditions in each step of long-term apple storage. Patulin accumulation seemed highly strain dependent and no significant differences between the storage steps were observed. The results also indicated that a high spore inoculum may lead to a strong patulin accumulation even at cold temperatures (1 °C) combined with controlled atmosphere (CA) (3% O2, 1% CO2), suggesting that future control strategies may benefit from considering the duration of storage under CA conditions as well as duration of deck storage.


Sign in / Sign up

Export Citation Format

Share Document