scholarly journals Barley Seeds miRNome Stability during Long-Term Storage and Aging

2021 ◽  
Vol 22 (9) ◽  
pp. 4315
Author(s):  
Marta Puchta ◽  
Jolanta Groszyk ◽  
Magdalena Małecka ◽  
Marek D. Koter ◽  
Maciej Niedzielski ◽  
...  

Seed aging is a complex biological process that has been attracting scientists’ attention for many years. High-throughput small RNA sequencing was applied to examine microRNAs contribution in barley seeds senescence. Unique samples of seeds that, despite having the same genetic makeup, differed in viability after over 45 years of storage in a dry state were investigated. In total, 61 known and 81 novel miRNA were identified in dry seeds. The highest level of expression was found in four conserved miRNA families, i.e., miR159, miR156, miR166, and miR168. However, the most astonishing result was the lack of significant differences in the level of almost all miRNAs in seed samples with significantly different viability. This result reveals that miRNAs in dry seeds are extremely stable. This is also the first identified RNA fraction that is not deteriorating along with the loss of seed viability. Moreover, the novel miRNA hvu-new41, with higher expression in seeds with the lowest viability as detected by RT-qPCR, has the potential to become an indicator of the decreasing viability of seeds during storage in a dry state.

2009 ◽  
Vol 14 (5) ◽  
pp. 492-498 ◽  
Author(s):  
Martin Joseph Pfeifer ◽  
Guenther Scheel

This report describes the features and the performance of a new and significantly improved 1536-well microplate design. The design allows for simple, automation-friendly, and cost-effective storage of compound solutions for high-throughput screening. The plate design is based on Society for Biomolecular Sciences standards for microplates and can be molded from polystyrene or cycloolefin copolymer, thus making the plate suitable for use with acoustic dispensing as well as other conventional liquid dispensing in the nanoliter range. For a 9:1 DMSO/water mix as solvent, the novel plate design has shown to perform over 4 months with only minor losses in solvent. Thus, this novel plate design creates the basis for further reductions in compound storage volumes and allows for an increase in the storage times for microliter volumes for up to a year or more. The high protection against solvent evaporation is also visible for aqueous solutions, thus allowing for reduced edge effects during screening campaigns.


2021 ◽  
pp. 99-103
Author(s):  
A. A. Molyavko ◽  
A. V. Marukhlenko ◽  
N. P. Borisova

Experimental studies have shown that with an increased level of mineral nutrition (N120P180K240) all varieties increased the yield (by 1.7–4.1 tons/ha, or by 10–25%), while the most productive varieties being Bryansky Nadezhny, Bryanskaya Novinka, Slava Bryanshchiny (21.9–22.9 tons/ha). In terms of dry substances content almost all varieties met the requirements of processing, which called for for a dry substance level in tubers of at least 20–24%. With an increase in the dose of fertilizers the amount of starch and dry matter in tubers decreased. On an average background, the starch content compared to the control decreased by 0.7–1.1%, dry substances — by 0.7– 1.2%, on an increased background respectively — by 1.2–1.7%, dry substances — by 1.4–2.7%. The taste of potatoes on an increased background of fertilizers worsened regardless of variety. In terms of darkening of the flesh, raw cleaned tubers of all varieties are not suitable for long-term storage (for example, for 24 hours), while boiled tubers of all varieties did not reduce the quality. Growing potatoes on an increased background of mineral nutrition increased the darkening of raw tubers of the studied varieties compared to control. In the studied varieties the content of reducing sugars in many cases exceeded the amount allowed for the manufacture of crispy potatoes, and therefore its quality was reduced, mainly due to the color of the slices. Almost all varieties gave puree of good quality. An increase in the background of fertilizers slightly worsened the consistency of puree, which reduced the overall estimate.


Author(s):  
Margarita Ishmuratova ◽  
◽  
Damirzhan Baigarayev ◽  
Saltanat Tleukenova ◽  
Elena Gavrilkova ◽  
...  

This article presents the summarized data on cryopreservation of seeds of the medical plant Nepeta cataria. Cryopreservation is a highly promising method for saving of seed materials, allowing to organize long-term storage without viability loss. The purpose of present work is to optimize conditions of cryopreservation of seed materials of Nepeta cataria. Assessment of seed survival rate in the storage showed a linear decrease in seed viability and energy of germination. After 30 months of storage at the low positive temperature (+5 ºC) in paper pack seed rate decreased to 12.0 % and energy of germination to 11.2 %; after 4 years of storage seeds lost viability. During conduction of research the type of container, condition of thawing, optimal moisture of seeds and cryoprotectants are optimized. The optimal container for cryopreservation in liquid nitrogen was plastic cryo tubes; defrosting at room temperature. The best seed rate is found at moisture 3 %; the best cryoprotectant was glucose, the optimal concentration was 15 %. The result of the research is used for creation of the long-term storage medicinal cultures’ seed bank in the liquid nitrogen.


Author(s):  
Hayati Akman

This study targeted to elucidate the effect of seed aging on germination and emergence rates with and shoot characteristics in wheat cultivars. For this purpose, different bread wheat cultivars stored for 7 years and non-stored were compared for coleoptile length, root mass, shoot mass, root length as well as germination and seedling emergence rates. Here, the evidence suggested that seed storage over a prolonged period affected root and Shoot growth, coleoptile length, seed germination, and seedling emergence rates adversely. By linking germination and emergence rates, the data presented here indicated that a reduction in emergence rate in long-term storage was higher than that in the germination rate. It was also found that there were significant variations among the wheat cultivars about investigated traits during long-term storage. However, the emergence rates of Kate A1 and Flamura 85 were not affected substantially by long-term storage. The study suggested future studies to focus on clarification of the process controlling natural seed aging as such knowledge allows clue the eventual consequences of long-term storage.


2008 ◽  
Vol 1107 ◽  
Author(s):  
J J Hastings

AbstractGlobally, the nuclear industry has a large number of legacy wastes that are stored in ponds, silos and tanks that are nearing the end of their design lifetime and hence said wastes need processing. In the UK there are significant quantities of radioactive sludge that have arisen from the corrosion of early Magnox fuel cans which have been stored underwater. As part of the present aggressive clean-up programme these materials will be retrieved, separated, processed and immobilised as dry waste forms for long-term storage. It is envisaged that hydraulic retrieval will be used for these ILW sludges resulting in some activity being released from the sludge phase to the process liquors challenging downstream ion exchange effluent treatment plants.In order to understand this challenge, experiments have been conducted on sludge in ILW storage ponds and during sludge transfer operations to study the activity released from said sludges. In particular the solubility, adsorption behaviour of Sr-90 is discussed and how this and other aspects of the sludge chemistry impact upon the ion exchange effluent treatment process. The novel methodologies employed to obtain this data is also discussed.


2013 ◽  
Vol 25 (4) ◽  
pp. 940-978 ◽  
Author(s):  
Andrea Soltoggio ◽  
Jochen J. Steil

In the course of trial-and-error learning, the results of actions, manifested as rewards or punishments, occur often seconds after the actions that caused them. How can a reward be associated with an earlier action when the neural activity that caused that action is no longer present in the network? This problem is referred to as the distal reward problem. A recent computational study proposes a solution using modulated plasticity with spiking neurons and argues that precise firing patterns in the millisecond range are essential for such a solution. In contrast, the study reported in this letter shows that it is the rarity of correlating neural activity, and not the spike timing, that allows the network to solve the distal reward problem. In this study, rare correlations are detected in a standard rate-based computational model by means of a threshold-augmented Hebbian rule. The novel modulated plasticity rule allows a randomly connected network to learn in classical and instrumental conditioning scenarios with delayed rewards. The rarity of correlations is shown to be a pivotal factor in the learning and in handling various delays of the reward. This study additionally suggests the hypothesis that short-term synaptic plasticity may implement eligibility traces and thereby serve as a selection mechanism in promoting candidate synapses for long-term storage.


2019 ◽  
Vol 20 (7) ◽  
pp. 1568 ◽  
Author(s):  
Ewelina Ratajczak ◽  
Arleta Małecka ◽  
Iwona Ciereszko ◽  
Aleksandra Staszak

Seeds enable plant survival in harsh environmental conditions, and via seeds, genetic information is transferred from parents to the new generation; this stage provides an opportunity for sessile plants to settle in new territories. However, seed viability decreases over long-term storage due to seed aging. For the effective conservation of gene resources, e.g., in gene banks, it is necessary to understand the causes of decreases in seed viability, not only where the aging process is initiated in seeds but also the sequence of events of this process. Mitochondria are the main source of reactive oxygen species (ROS) production, so they are more quickly and strongly exposed to oxidative damage than other organelles. The mitochondrial antioxidant system is also less active than the antioxidant systems of other organelles, thus such mitochondrial ‘defects’ can strongly affect various cell processes, including seed aging, which we discuss in this paper.


2021 ◽  
Vol 22 (1) ◽  
pp. 402
Author(s):  
Natalia Wojciechowska ◽  
Agnieszka Bagniewska-Zadworna ◽  
Julia Minicka ◽  
Kornel M. Michalak ◽  
Ewa M. Kalemba

Beech seeds are produced irregularly, and there is a need for long-term storage of these seeds for forest management practices. Accumulated reactive oxygen species broadly oxidize molecules, including amino acids, such as methionine, thereby contributing to decreased seed viability. Methionine oxidation can be reversed by the activity of methionine sulfoxide reductases (Msrs), which are enzymes involved in the regulation of many developmental processes and stress responses. Two types of Msrs, MsrB1 and MsrB2, were investigated in beech seeds to determine their abundance and localization. MsrB1 and MsrB2 were detected in the cortical cells and the outer area of the vascular cylinder of the embryonic axes as well as in the epidermis and parenchyma cells of cotyledons. The abundances of MsrB1 and MsrB2 decreased during long-term storage. Ultrastructural analyses have demonstrated the accumulation of these proteins in protein storage vacuoles and in the cytoplasm, especially in close proximity to the cell membrane. In silico predictions of possible Msr interactions supported our findings. In this study, we investigate the contribution of MsrB1 and MsrB2 locations in the regulation of seed viability and suggest that MsrB2 is linked with the longevity of beech seeds via association with proper utilization of storage material.


Sign in / Sign up

Export Citation Format

Share Document