scholarly journals Fluorescence Study of Riboflavin Interactions with Graphene Dispersed in Bioactive Tannic Acid

2021 ◽  
Vol 22 (10) ◽  
pp. 5270
Author(s):  
María Paz San Andrés ◽  
Marina Baños-Cabrera ◽  
Lucía Gutiérrez-Fernández ◽  
Ana María Díez-Pascual ◽  
Soledad Vera-López

The potential of tannic acid (TA) as a dispersing agent for graphene (G) in aqueous solutions and its interaction with riboflavin have been studied under different experimental conditions. TA induces quenching of riboflavin fluorescence, and the effect is stronger with increasing TA concentration, due to π-π interactions through the aromatic rings, and hydrogen bonding interactions between the hydroxyl moieties of both compounds. The influence of TA concentration, the pH, and the G/TA weight ratio on the quenching magnitude, have been studied. At a pH of 4.1, G dispersed in TA hardly influences the riboflavin fluorescence, while at a pH of 7.1, the nanomaterial interacts with riboflavin, causing an additional quenching to that produced by TA. When TA concentration is kept constant, quenching of G on riboflavin fluorescence depends on both the G/TA weight ratio and the TA concentration. The fluorescence attenuation is stronger for dispersions with the lowest G/TA ratios, since TA is the main contributor to the quenching effect. Data obey the Stern–Volmer relationship up to TA 2.0 g L−1 and G 20 mg L−1. Results demonstrate that TA is an effective dispersant for graphene-based nanomaterials in liquid medium and a green alternative to conventional surfactants and synthetic polymers for the determination of biomolecules.

2010 ◽  
Vol 2010 ◽  
pp. 1-4 ◽  
Author(s):  
Liang Wei

A simple, rapid and sensitive method was proposed for online determination of tannic acid in colored tannery wastewater by automatic reference flow injection analysis. Based on the tannic acid reduction phosphotungstic acid to form blue compound in pH 12.38 alkaline solutions, the shade of blue compound is in a linear relation to the content of tannic acid at the point of the maximum absorption peak of 760 nm. The optimal experimental conditions had been obtained. The linear range of the proposed method was between 200 μgL−1to 80 mgL−1and the detection limit was 0.58 μgL−1. The relative standard deviation was 3.08% and 2.43% for 500 μgL−1and 40 mgL−1of tannic acid standard solution, respectively, (n=10). The method had been successfully applied to determination of tannic acid in colored tannery wastewaters and the analytical results were satisfactory.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2537 ◽  
Author(s):  
Jiye Chai ◽  
Xinru Yu ◽  
Jian Zhao ◽  
Aili Sun ◽  
Xizhi Shi ◽  
...  

The well-dispersive and superparamagnetic Fe3O4-nanocrystals (Fe3O4-NCs) which could significantly enhance the anodic electrochemiluminescence (ECL) behavior of luminol, were synthesized in this study. Compared to ZnS, ZnSe, CdS and CdTe nanoparticles, the strongest anodic ECL signals were obtained at +1.6 V on the Fe3O4-NCs coated glassy carbon electrode. The ECL spectra revealed that the strong ECL resonance energy transfer occurred between luminol and Fe3O4-NCs. Furthermore, under the optimized ECL experimental conditions, such as the amount of Fe3O4-NCs, the concentration of luminol and the pH of supporting electrolyte, BPA exhibited a stronger distinct ECL quenching effect than its structural analogs and a highly selective and sensitive ECL sensor for the determination of bisphenol A (BPA) was developed based on the Fe3O4-NCs. A good linear relationship was found between the ECL intensity and the increased BPA concentration within 0.01–5.0 mg/L, with a correlation coefficient of 0.9972. The detection limit was 0.66 × 10−3 mg/L. Good recoveries between 96.0% and 105.0% with a relative standard deviation of less than 4.8% were obtained in real water samples. The proposed ECL sensor can be successfully employed to BPA detection in environmental aqueous samples.


2014 ◽  
Vol 97 (6) ◽  
pp. 1725-1729
Author(s):  
Xijuan Tan ◽  
Zhenghua Song ◽  
Donghua Chen ◽  
Hairu Lv

Abstract An ultrasensitive, quick, and simple approach for the determination of pg levels of diphacinone (DPN) by flow injection chemiluminescence (CL) analysis is proposed for the first time. It is based on the quenching effect of DPN on the CL intensity from a luminol–bovine serum albumin (BSA) CL system, for which the CL intensity decrease was linearly proportional to the logarithm of DPN concentration in the range of 5.0 to 5000 pg/mL. The LOD for DPN determination was as low as 2.0 pg/mL (3σ), and the RSD values were less than 5.0%. One determination cycle that included sampling and washing could be performed in 0.5 min with a sample throughput of 120/h under the optimum experimental conditions. This proposed method was successfully applied to determining DPN in human gastric juice and serum samples with recoveries from 91.8 to 114.3%, and to continuous monitoring of the degradation of DPN in water samples exposed to sunlight during 43 h with a variation ratio of 99.99%. The possible interaction behavior of BSA–DPN is briefly discussed.


1996 ◽  
Vol 76 (01) ◽  
pp. 005-008 ◽  
Author(s):  
Jean Claude Lormeau ◽  
Jean Pascal Herault ◽  
Jean Marc Herbert

SummaryWe examined the effect of the synthetic pentasaccharide representing the minimal binding site of heparin to antithrombin on the antithrombin-mediated inactivation of factor Vila bound to tissue factor. This effect was compared to the effect of unfractionated heparin. Using purified recombinant human coagulation factors and either a clotting or an amidolytic assay for the determination of the residual activity of factor Vila, we showed that the pentasaccharide was an efficient antithrombin-dependent inhibitor of the coagulant activity of tissue factor-factor Vila complex. In our experimental conditions, assuming a mean MW of 14,000 for heparin, the molar pseudo-first order rate constants for ATIII-mediated FVIIa inhibition by ATIII-binding heparin and by the synthetic pentasaccharide were found to be similar with respective values of 104,000 ± 10,500 min-1 and 112,000 ± 12,000 min-1 (mean ± s.e.m., n = 3)


2017 ◽  
Author(s):  
Xueming Dong

Catalytic deoxygenation of coal enhances the stability and combustion performance of coal-derived liquids. However, determination of the selectivity of removal of oxygen atoms incorporated in or residing outside of aromatic rings is challenging. This limits the ability to evaluate the success of catalytic deoxygenation processes. A mass spectrometric method, in-source collision-activated dissociation (ISCAD), combined with high resolution product ion detection, is demonstrated to allow the determination of whether the oxygen atoms in aromatic compounds reside outside of aromatic rings or are part of the aromatic system, because alkyl chains can be removed from aromatic cores via ISCAD. Application of this method for the analysis of a subbituminous coal treated using a supported catalyst revealed that the catalytic treatment reduced the number of oxygen-containing heteroaromatic rings but not the number of oxygen atoms residing outside the aromatic rings.<br>


2017 ◽  
Author(s):  
Xueming Dong

Catalytic deoxygenation of coal enhances the stability and combustion performance of coal-derived liquids. However, determination of the selectivity of removal of oxygen atoms incorporated in or residing outside of aromatic rings is challenging. This limits the ability to evaluate the success of catalytic deoxygenation processes. A mass spectrometric method, in-source collision-activated dissociation (ISCAD), combined with high resolution product ion detection, is demonstrated to allow the determination of whether the oxygen atoms in aromatic compounds reside outside of aromatic rings or are part of the aromatic system, because alkyl chains can be removed from aromatic cores via ISCAD. Application of this method for the analysis of a subbituminous coal treated using a supported catalyst revealed that the catalytic treatment reduced the number of oxygen-containing heteroaromatic rings but not the number of oxygen atoms residing outside the aromatic rings.<br>


1982 ◽  
Vol 47 (7) ◽  
pp. 1973-1978 ◽  
Author(s):  
Jiří Karhan ◽  
Zbyněk Ksandr ◽  
Jiřina Vlková ◽  
Věra Špatná

The determination of alcohols by 19F NMR spectroscopy making use of their reaction with hexafluoroacetone giving rise to hemiacetals was studied on butanols. The calibration curve method and the internal standard method were used and the results were mutually compared. The effects of some experimental conditions, viz. the sample preparation procedure, concentration, spectrometer setting, and electronic integration, were investigated; the conditions, particularly the concentrations, proved to have a statistically significant effect on the results of determination. For the internal standard method, the standard deviation was 0.061 in the concentration region 0.032-0.74 mol l-1. The method was applied to a determination of alcohols in the distillation residue from an oxo synthesis.


Author(s):  
Timothy Aljoscha Frede ◽  
Marlene Dietz ◽  
Norbert Kockmann

AbstractFast chemical process development is inevitably linked to an optimized determination of thermokinetic data of chemical reactions. A miniaturized flow calorimeter enables increased sensitivity when examining small amounts of reactants in a short time compared to traditional batch equipment. Therefore, a methodology to determine optimal reaction conditions for calorimetric measurement experiments was developed and is presented in this contribution. Within the methodology, short-cut calculations are supplemented by computational fluid dynamics (CFD) simulations for a better representation of the hydrodynamics within the microreactor. This approach leads to the effective design of experiments. Unfavourable experimental conditions for kinetics experiments are determined in advance and therefore, need not to be considered during design of experiments. The methodology is tested for an instantaneous acid-base reaction. Good agreement of simulations was obtained with experimental data. Thus, the prediction of the hydrodynamics is enabled and the first steps towards a digital twin of the calorimeter are performed. The flow rates proposed by the methodology are tested for the determination of reaction enthalpy and showed that reasonable experimental settings resulted. Graphical abstract A methodology is suggested to evaluate optimal reaction conditions for efficientacquisition of kinetic data. The experimental design space is limited by thestepwise determination of important time scales based on specified input data.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 328
Author(s):  
Kamil Anasiewicz ◽  
Józef Kuczmaszewski

This article is an evaluation of the phenomena occurring in adhesive joints during curing and their consequences. Considering changes in the values of Young’s modulus distributed along the joint thickness, and potential changes in adhesive strength in the cured state, the use of a numerical model may make it possible to improve finite element simulation effects and bring their results closer to experimental data. The results of a tensile test of a double overlap adhesive joint sample, performed using an extensometer, are presented. This test allowed for the precise determination of the shear modulus G of the cured adhesive under experimental conditions. Then, on the basis of the research carried out so far, a numerical model was built, taking the differences observed in the properties of the joint material into account. The stress distribution in a three-zone adhesive joint was analyzed in comparison to the standard numerical model in which the adhesive in the joint was treated as isotropic. It is proposed that a joint model with three-zones, differing in the Young’s modulus values, is more accurate for mapping the experimental results.


Sign in / Sign up

Export Citation Format

Share Document