scholarly journals Programmed Death-Ligand 1 as a Regulator of Tumor Progression and Metastasis

2021 ◽  
Vol 22 (10) ◽  
pp. 5383
Author(s):  
Ioannis A. Vathiotis ◽  
Georgia Gomatou ◽  
Dimitrios J. Stravopodis ◽  
Nikolaos Syrigos

Programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint has long been implicated in modeling antitumor immunity; PD-1/PD-L1 axis inhibitors exert their antitumor effects by relieving PD-L1-mediated suppression on tumor-infiltrating T lymphocytes. However, recent studies have unveiled a distinct, tumor-intrinsic, potential role for PD-L1. In this review, we focus on tumor-intrinsic PD-L1 signaling and delve into preclinical evidence linking PD-L1 protein expression with features of epithelial-to-mesenchymal transition program, cancer stemness and known oncogenic pathways. We further summarize data from studies supporting the prognostic significance of PD-L1 in different tumor types. We show that PD-L1 may indeed have oncogenic potential and act as a regulator of tumor progression and metastasis.

2020 ◽  
Vol 20 (2) ◽  
pp. 90-95 ◽  
Author(s):  
Hao Jin ◽  
Min Cui

Objective: This mini-review aims to discuss research works about heparanase published in 2016, 2017, 2018 and 2019 and provide a direction for therapy methods targeting heparanase. Patients and Methods: The relevant data were searched by using keywords “heparanase” “function”, “diseases” and “inhibitors” in “PubMed”, “Web of Science” and “China Knowledge Resource Integrated databases (CNKI)”, and a hand-search was done to acquire peer-reviewed articles and reports about heparanase. Results: Except for tumor progression, pathological processes including procoagulant activities, preeclamptic placentas, inflammation and so on are all verified to be associated with heparanase activity. Also, these newly-found functions are closely related to certain cellular activities, including epithelial to Mesenchymal Transition (EMT). Conclusion: It could be concluded that heparanase would be a potential and valuable therapy target.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 555
Author(s):  
Soyoung Hur ◽  
Eungyeong Jang ◽  
Jang-Hoon Lee

Tumors are one of the most life-threatening diseases, and a variety of cancer treatment options have been continuously introduced in order to overcome cancer and improve conventional therapy. Orostachys japonica (O. japonica), which is a perennial plant belonging to the genus Orostachys of the Crassulaceae family, has been revealed to exhibit pharmacological properties against various tumors in numerous studies. The present review aimed to discuss the biological actions and underlying molecular mechanisms of O. japonica and its representative compounds—kaempferol and quercetin—against tumors. O. japonica reportedly has antiproliferative, anti-angiogenic, and antimetastatic activities against various types of malignant tumors through the induction of apoptosis and cell cycle arrest, a blockade of downstream vascular endothelial growth factor (VEGF)-VEGFR2 pathways, and the regulation of epithelial-to-mesenchymal transition. In addition, emerging studies have highlighted the antitumor efficacy of kaempferol and quercetin. Interestingly, it was found that alterations of the mitogen-activated protein kinase (MAPK) signaling cascades are involved in the pivotal mechanisms of the antitumor effects of O. japonica and its two compounds against cancer cell overgrowth, angiogenesis, and metastasis. In summary, O. japonica could be considered a preventive and therapeutic medicinal plant which exhibits antitumor actions by reversing altered patterns of MAPK cascades, and kaempferol and quercetin might be potential components that can contribute to the efficacy and underlying mechanism of O. japonica.


2020 ◽  
Author(s):  
Zhilan Zhang ◽  
Lin Li ◽  
Mengyuan Li ◽  
Xiaosheng Wang

Abstract Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 13 million people and has caused more than 570,000 deaths worldwide as of July 13, 2020. The SARS-CoV-2 human cell receptor ACE2 has recently received extensive attention for its role in SARS-CoV-2 infection. Many studies have also explored the association between ACE2 and cancer. However, a systemic investigation into associations between ACE2 and oncogenic pathways, tumor progression, and clinical outcomes in pan-cancer remains lacking. Methods: Using cancer genomics datasets from the Cancer Genome Atlas (TCGA) program, we performed computational analyses of associations between ACE2 expression and antitumor immunity, immunotherapy response, oncogenic pathways, tumor progression phenotypes, and clinical outcomes in 12 cancer cohorts. We also identified co-expression networks of ACE2 in cancer.Results: ACE2 upregulation was associated with increased antitumor immune signatures and PD-L1 expression, and favorable anti-PD-1/PD-L1/CTLA-4 immunotherapy response. ACE2 expression levels inversely correlated with the activity of cell cycle, mismatch repair, TGF-β, Wnt, VEGF, and Notch signaling pathways. Moreover, ACE2 expression levels had significant inverse correlations with tumor proliferation, stemness, and epithelial-mesenchymal transition (EMT). ACE2 upregulation was associated with favorable survival in pan-cancer and in multiple individual cancer types. Conclusions: ACE2 upregulation was associated with increased antitumor immunity and immunotherapy response, reduced tumor malignancy, and favorable survival in cancer, suggesting that ACE2 is a protective factor for cancer progression. Our data may provide potential clinical implications for treating cancer patients infected with SARS-CoV-2.


2020 ◽  
Vol 41 (9) ◽  
pp. 1219-1228
Author(s):  
Seçil Demirkol Canlı ◽  
Esin Gülce Seza ◽  
Ilir Sheraj ◽  
Ismail Gömçeli ◽  
Nesrin Turhan ◽  
...  

Abstract AKR1B1 and AKR1B10, members of the aldo-keto reductase family of enzymes that participate in the polyol pathway of aldehyde metabolism, are aberrantly expressed in colon cancer. We previously showed that high expression of AKR1B1 (AKR1B1HIGH) was associated with enhanced motility, inflammation and poor clinical outcome in colon cancer patients. Using publicly available datasets and ex vivo gene expression analysis (n = 51, Ankara cohort), we have validated our previous in silico finding that AKR1B1HIGH was associated with worse overall survival (OS) compared with patients with low expression of AKR1B1 (AKR1B1LOW) samples. A combined signature of AKR1B1HIGH and AKR1B10LOW was significantly associated with worse recurrence-free survival (RFS) in microsatellite stable (MSS) patients and in patients with distal colon tumors as well as a higher mesenchymal signature when compared with AKR1B1LOW/AKR1B10HIGH tumors. When the patients were stratified according to consensus molecular subtypes (CMS), AKR1B1HIGH/AKR1B10LOW samples were primarily classified as CMS4 with predominantly mesenchymal characteristics while AKR1B1LOW/AKR1B10HIGH samples were primarily classified as CMS3 which is associated with metabolic deregulation. Reverse Phase Protein Array carried out using protein samples from the Ankara cohort indicated that AKR1B1HIGH/AKR1B10LOW tumors showed aberrant activation of metabolic pathways. Western blot analysis of AKR1B1HIGH/AKR1B10LOW colon cancer cell lines also suggested aberrant activation of nutrient-sensing pathways. Collectively, our data suggest that the AKR1B1HIGH/AKR1B10LOW signature may be predictive of poor prognosis, aberrant activation of metabolic pathways, and can be considered as a novel biomarker for colon cancer prognostication.


2019 ◽  
Vol 8 (5) ◽  
pp. 642 ◽  
Author(s):  
Snahlata Singh ◽  
Rumela Chakrabarti

Epithelial-to-mesenchymal transition (EMT) is a process through which epithelial cells lose their epithelial characteristics and cell–cell contact, thus increasing their invasive potential. In addition to its well-known roles in embryonic development, wound healing, and regeneration, EMT plays an important role in tumor progression and metastatic invasion. In breast cancer, EMT both increases the migratory capacity and invasive potential of tumor cells, and initiates protumorigenic alterations in the tumor microenvironment (TME). In particular, recent evidence has linked increased expression of EMT markers such as TWIST1 and MMPs in breast tumors with increased immune infiltration in the TME. These immune cells then provide cues that promote immune evasion by tumor cells, which is associated with enhanced tumor progression and metastasis. In the current review, we will summarize the current knowledge of the role of EMT in the biology of different subtypes of breast cancer. We will further explore the correlation between genetic switches leading to EMT and EMT-induced alterations within the TME that drive tumor growth and metastasis, as well as their possible effect on therapeutic response in breast cancer.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Wanqin Wang ◽  
Jun Zhao ◽  
Xiaoxia Wen ◽  
Curtis Chun-Jen Lin ◽  
Junjie Li ◽  
...  

AXL receptor tyrosine kinase is overexpressed in a number of solid tumor types including triple-negative breast cancer (TNBC). AXL is considered an important regulator of epithelial-to-mesenchymal transition (EMT) and a potential therapeutic target for TNBC. In this work, we used microPET/CT with 64Cu-labeled anti-human AXL antibody (64Cu-anti-hAXL) to noninvasively interrogate the degradation of AXL in vivo in response to 17-allylamino-17-demethoxygeldanamycin (17-AAG), a potent inhibitor of HSP90. 17-AAG treatment caused significant decline in AXL expression in orthotopic TNBC MDA-MB-231 tumors, inhibited EMT, and delayed tumor growth in vivo, resulting in significant reduction in tumor uptake of 64Cu-anti-hAXL as clearly visualized by microPET/CT. Our data indicate that 64Cu-anti-hAXL can be useful for monitoring anti-AXL therapies and for assessing inhibition of HSP90 molecular chaperone using AXL as a molecular surrogate.


Sign in / Sign up

Export Citation Format

Share Document