scholarly journals Interfacial Modeling of Fibrinogen Adsorption onto LiNbO3 Single Crystal–Single Domain Surfaces

2021 ◽  
Vol 22 (11) ◽  
pp. 5946
Author(s):  
Jeffrey S. Cross ◽  
Yasuhiro Kubota ◽  
Abhijit Chatterjee ◽  
Samir Unni ◽  
Toshiyuki Ikoma ◽  
...  

For the development of next-generation protein-based biosensor surfaces, it is important to understand how functional proteins, such as fibrinogen (FBG), interact with polar substrate surfaces in order to prepare highly sensitive points of medical care diagnostics. FBG, which is a fibrous protein with an extracellular matrix, has both positively and negatively charged regions on its 3-dimensional surface, which makes interpreting how it effectively binds to polarized surfaces challenging. In this study, single-crystal LiNbO3 (LNO) substrates that have surface charges were used to investigate the adsorption of FBG protruding polar fragments on the positively and negatively charged LNO surfaces. We performed a combination of experiments and multi-scale molecular modeling to understand the binding of FBG in vacuum and water-solvated surfaces of LNO. XPS measurements showed that the FBG adsorption on LNO increased with increment in solution concentration on surfaces independent of charges. Multi-scale molecular modeling employing Quantum Mechanics, Monte Carlo, and Molecular Mechanics addressed the phenomenon of FBG fragment bonding on LNO surfaces. The binding simulation validated the experimental observation using zeta potential measurements which showed presence of solvated medium influenced the adsorption phenomenon due to the negative surface potential.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohsen Kompany-Zareh ◽  
Saeed Bagheri

AbstractExploration in the way of understanding the optical behavior and structure of carbon nanodots has been increased due to their vast application. Their emission dependency on excitation wavelengths is the more prevalent and controversial subject. In this report we considered the optical structure of hydrothermally synthesized carbon nanodots using citric acid and 2,3-diaminopyridine as precursors. The presence of different emission centers experimented through anion exchange chromatography which resulted in fractions with more unique optical structures. The quantum confinement effect and energy exchange between different types of carbon nanodots, due to aggregation in higher concentration levels, was studied applying a stepwise dilution experiment. Analysis of the experimental data was done through the parallel factor analysis and the trajectory pattern recognition which resolved more about optical interactions and the presence of different emission centers in different particles. Results from infrared spectroscopy confirmed the dominating density of carboxyl functional groups on the nanodots with negative surface charges and higher influence of amine groups on dots with positive surface charges.


2020 ◽  
Vol 14 (6) ◽  
pp. 1849-1855
Author(s):  
Philipp Mamot ◽  
Samuel Weber ◽  
Maximilian Lanz ◽  
Michael Krautblatter

Abstract. A temperature- and stress-dependent failure criterion for ice-filled rock (limestone) joints was proposed in 2018 as an essential tool to assess and model the stability of degrading permafrost rock slopes. To test the applicability to other rock types, we conducted laboratory tests with mica schist and gneiss, which provide the maximum expected deviation of lithological effects on the shear strength due to strong negative surface charges affecting the rock–ice interface. Retesting 120 samples at temperatures from −10 to −0.5 ∘C and normal stress of 100 to 400 kPa, we show that even for controversial rocks the failure criterion stays unaltered, suggesting that the failure criterion is transferable to mostly all rock types.


2012 ◽  
Vol 195 ◽  
pp. 301-304 ◽  
Author(s):  
Heike Angermann ◽  
U. Stürzebecher ◽  
J. Kegel ◽  
C. Gottschalk ◽  
K. Wolke ◽  
...  

For further enhancement of solar energy conversion efficiency the passivation of silicon (Si) substrate surfaces and interfaces of Si-based solar cell devices is a decisive precondition to reduce recombination losses of photogenerated charge carriers. These losses are mainly controlled by surface charges, the density and the character of rechargeable interface states (Dit) [], which are induced by defects localised in a small interlayer extending over only few Å. Therefore, the application of fast non-destructive methods for characterization of the electronic interface properties directly during the technological process has received an increasing interest in recent years.


2019 ◽  
Vol 10 (43) ◽  
pp. 10018-10024 ◽  
Author(s):  
Arpan Hazra ◽  
Dewald P. van Heerden ◽  
Somananda Sanyal ◽  
Prem Lama ◽  
Catharine Esterhuysen ◽  
...  

A flexible twofold interpenetrated MOF reversibly switches between closed, narrow and large pore forms. In situ crystallographic analysis of a narrow-pore intermediate phase provides a detailed explanation of a plateau observed during desorption.


Author(s):  
Qiang Xu ◽  
Chen Li ◽  
Jing Nie ◽  
Yong Guo ◽  
Xiang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document