scholarly journals Resveratrol Modulation of Apoptosis and Cell Cycle Response to Cisplatin in Head and Neck Cancer Cell Lines

2021 ◽  
Vol 22 (12) ◽  
pp. 6322
Author(s):  
Marinela Bostan ◽  
Mirela Mihaila ◽  
Georgiana Gabriela Petrica-Matei ◽  
Nicoleta Radu ◽  
Razvan Hainarosie ◽  
...  

In head and neck cancers, the effectiveness of cisplatin (CisPt) treatment is limited by its toxicity, especially when higher doses are necessary, and the possible occurrence of cisplatin resistance. This study evaluated the effects of resveratrol (RSV) on the expression of different genes involved in the response of human tumor cells (FaDu, PE/CA-PJ49) to cisplatin therapy. Our results revealed that RSV induced apoptosis amplification in both FaDu and PE/CA-PJ49 cells and modulated the expression of specific genes differently than in normal HaCaT cells. In FaDu cells, combined CisPt + RSV treatment induced an increase in apoptosis, which was associated with an increase in c-MYC and TP53 and a decrease in BCL-2 expression. While CisPt + RSV treatment induced apoptosis in PE/CA-PJ49 cells by inhibition of BCL-2 associated with high levels of MDM-2 and subsequently led to inhibition of TP53 gene expression. Decreased c-MYC expression in PE/CA-PJ49 treated with CisPt + RSV was accompanied by cell cycle blockage in G0/G1 phase. In conclusion, RSV influences tumor cell response to CisPt by inducing apoptosis and modulating gene expression. In addition, in normal HaCaT cells, RSV was able to reduce the harmful effects of CisPt.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 904-904
Author(s):  
Richard E. Davis ◽  
Vivian R Ruvolo ◽  
Zhiqiang Wang ◽  
Wencai Ma ◽  
Wendy D. Schober ◽  
...  

Abstract Galectins are a family of b-galactoside binding proteins with effects on cell adhesion, apoptosis, cell cycle, and mRNA processing. Galectin-3 (LGALS3) is unique among galectins by having an N terminal region of roughly 130 amino acids that allows for multimerization and binding to other proteins independent of carbohydrate binding. In addition to promoting BCL2 gene expression and mitochondrial integrity, LGALS3 (along with LGALS1) positively regulates RAS signaling and thus stabilizes survival proteins dependent on ERK phosphorylation such as MCL-1. The pro-survival functions of LGALS3 and other galectins suggest that their targeting could be therapeutic for cancers including AML. Indeed, LGALS3 expression is a predictor of poor prognosis in acute myeloid leukemia (AML), as reported by Cheng and colleagues (Blood 2013) for patients with non-M3 AML and CN-AML. The modified pectin GCS-100 (La Jolla Pharmaceutical, San Diego, CA), now in a Phase II clinical trial for chronic kidney disease, binds and blocks the function of LGALS3. We report that GCS-100 suppresses the growth of AML cell lines OCI-AML3, THP-1, and HL60 in vitro as a single agent, at doses under the 250 ug/mL (i.e., within clinically-achievable concentrations). Short-term treatment of cells (i.e., < 6 hr) potently suppressed phosphorylation of AKT and ERK and reduced expression of BCL2 and MCL-1. Because LGALS3 positively regulates anti-apoptotic BCL2 family members, the Raz group has suggested targeting galectins to enhance efficacy of BH3 mimetic drugs (Harazano et al Cancer Metastasis Review 2013). We found that GCS-100 potently synergized with ABT-737 to kill OCI-AML3 cells: while 1 uM ABT-737 or 125 ug/mL GCS-100 reduced total viable cells by ~ 30% and induced apoptosis in < 20% of cells after 48 hr as single agents, their combination at those doses and time point reduced viable cells by ~ 94% and induced apoptosis in ~ 70% of cells. Suppression of LGALS3 by lentiviral shRNA reduced BCL2 gene expression as determined by qRT-PCR and augmented killing with ABT-737. Lentiviral suppression of LGALS3 protected cells from GCS-100 at doses of 250 ug/mL but reduction of the galectin failed to protect cells from higher doses of the drug (i.e., 500 ug/mL). This result suggests other galectins are likely inhibited at higher doses of the agent. We used gene expression profiling (GEP) on Illumina HT12v4 human whole-genome arrays to assess more broadly the molecular effects of inhibiting galectins in AML cell lines OCI-AML3 and THP-1 treated with 250 ug/mL or 500 ug/ml GCS-100 for 24 hr. Data were analyzed by Gene Set Enrichment Analysis (GSEA) using gene sets from the Molecular Signatures Database (www.broadinstitute.org/gsea/msigdb/). GSEA suggested that GCS-100 promotes differentiation and inhibits genes associated with proliferation. Multiple upregulated gene sets suggest that there may be a release of a differentiation block as a result of GCS-100 treatment. Furthermore, two gene sets suggest that GCS-100 behaves similar to a GSK3 inhibitor: Known pathways regulated by GSK3 in hematopoietic stem cells are mTOR and Wnt/beta Catenin. Inhibition of Wnt/beta Catenin can release a differentiation block. Consistent with GCS-100 promoting cell differentiation, lentiviral shRNA reduced LGALS3 protein > 90% in THP-1 cells and increased CD11b expression, suggesting increased differentiation, compared to cells with control shRNA. GCS-100 was tested in an in vitro model of the bone marrow microenvironment using BM-derived mesenchymal stromal cell (MSC). MSC can protect leukemia cells from a variety of clinically relevant chemotherapy drugs including AraC. GCS-100 was effective at killing AML cells despite the presence of MSC. Both THP-1 and OCI-AML3 cells exhibited > 80% and > 60% reduction of viable cells, respectively, despite the presence of MSC when treated with 250 ug/mL GCS-100 for 72 hours. In addition, GCS-100 was found to block adhesion of OCI-AML3 cells to MSC suggesting that GCS-100 could be effective in mobilizing AML cells. In summary, our findings suggest that GCS-100 can induce apoptosis in AML cells as a single agent or in combination with the BH3 mimetic ABT-737. The agent is effective even in the presence of MSC suggesting it could be efficacious in the leukemia niche. These findings suggest GCS-100 could be effective for AML therapy. Disclosures Rolke: La Jolla Pharmaceutical Company: Employment. Tidmarsh:La Jolla Pharmaceutical Company: Employment.


Oncogene ◽  
2002 ◽  
Vol 21 (10) ◽  
pp. 1510-1517 ◽  
Author(s):  
Tina Wiest ◽  
Elisabeth Schwarz ◽  
Christel Enders ◽  
Christa Flechtenmacher ◽  
Franz X Bosch

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Fen Peng ◽  
Chen-Hong Xue ◽  
Xiao-Jing Yang ◽  
Jing-Yi Huang ◽  
Zhou Chen ◽  
...  

Objective. In order to investigate the effects of PM2.5 on proliferation, cell cycle, apoptosis, and potential mechanism of human keratinocyte cell line HaCaT. Methods. HaCaT cells were treated with different concentrations of PM2.5 suspension for 24 hours. Cell viability was detected by the CCK-8 method. Cell cycle distribution and apoptosis were detected by flow cytometry. Microarray analyses were used to find out the microarray gene expression profiling; data processing included gene enrichment and pathway analysis. Western blot was conducted to validate the key pathways and regulators in the microarray analysis. Results. The cell activity decreased, and the cell cycle was significantly inhibited with the increase in PM2.5 concentration. Also, by conducting the gene expression microarray assay, we identified 541 upregulated genes and 935 downregulated genes in PM2.5-treated HaCaT cells. Real-time qPCR and western blot confirmed that PM2.5 treatment could induce the expression of ABCA1 while inhibiting that of END1 and CLDN1. Conclusion. Our results showed that PM2.5 could potentially regulate cell apoptosis and cell cycle arrest via ABCA1-, END1-, ID1-, and CLDN1-mediated pathways in human HaCaT cells, which laid a good foundation for follow-up drug intervention and drug development against skin damage caused by PM2.5 exposure.


Blood ◽  
2012 ◽  
Vol 120 (5) ◽  
pp. 1095-1106 ◽  
Author(s):  
Xiangao Huang ◽  
Maurizio Di Liberto ◽  
David Jayabalan ◽  
Jun Liang ◽  
Scott Ely ◽  
...  

Abstract Dysregulation of cyclin-dependent kinase 4 (CDK4) and CDK6 by gain of function or loss of inhibition is common in human cancer, including multiple myeloma, but success in targeting CDK with broad-spectrum inhibitors has been modest. By selective and reversible inhibition of CDK4/CDK6, we have developed a strategy to both inhibit proliferation and enhance cytotoxic killing of cancer cells. We show that induction of prolonged early-G1 arrest (pG1) by CDK4/CDK6 inhibition halts gene expression in early-G1 and prevents expression of genes programmed for other cell-cycle phases. Removal of the early-G1 block leads to S-phase synchronization (pG1-S) but fails to completely restore scheduled gene expression. Consequently, the IRF4 protein required to protect myeloma cells from apoptosis is markedly reduced in pG1 and further in pG1-S in response to cytotoxic agents, such as the proteasome inhibitor bortezomib. The coordinated loss of IRF4 and gain of Bim sensitize myeloma tumor cells to bortezomib-induced apoptosis in pG1 in the absence of Noxa and more profoundly in pG1-S in cooperation with Noxa in vitro. Induction of pG1 and pG1-S by reversible CDK4/CDK6 inhibition further augments tumor-specific bortezomib killing in myeloma xenografts. Reversible inhibition of CDK4/CDK6 in sequential combination therapy thus represents a novel mechanism-based cancer therapy.


2016 ◽  
Vol 61 (2) ◽  
pp. 293-299 ◽  
Author(s):  
Grzegorz Woźniak ◽  
Robert Herok ◽  
Roman Jaksik ◽  
Maciej Misiołek ◽  
Bogdan Kolebacz ◽  
...  

2006 ◽  
Vol 34 (05) ◽  
pp. 887-899 ◽  
Author(s):  
Wan-Ying Wu ◽  
Hong-Zhu Guo ◽  
Gui-Qin Qu ◽  
Jian Han ◽  
De-An Guo

Previous studies have shown that pseudolaric acid B (PB) would cause apoptosis in human tumor cell lines. However, the mechanisms of PB induced apoptosis are still unclear. In the present study, the mechanisms of PB induced apoptosis in the human hepatocellular carcinoma Bel-7402 cell line were investigated by measuring cell viability, rate of apoptosis, cell cycle, detecting DNA fragmentation, and measuring caspase-3 activation. The results indicated that PB inhibited Bel-7402 cell viability and induced cell death by causing DNA fragmentation, up regulating the early and late apoptotic rates, activating caspase-3 protein, and detaining the cell cycle in the G2/M phases. Additionally, PB-induced apoptosis was a dose- and time-dependent manner. These observations suggest that PB-induced apoptosis occurs through a caspase-dependent pathway and detains the cell cycle in the G2/M phase.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Deborah de Almeida Bauer Guimarães ◽  
Danielle dos Santos Bonfim De Castro ◽  
Felipe Leite de Oliveira ◽  
Eduardo Matos Nogueira ◽  
Marco Antônio Mota da Silva ◽  
...  

Breast cancer is one of the most prevalent cancers in the world and is also the leading cause of cancer death in women. The use of bioactive compounds of functional foods contributes to reduce the risk of chronic diseases, such as cancer and vascular disorders. In this study, we evaluated the antioxidant potential and the influence of pitaya extract (PE) on cell viability, colony formation, cell cycle, apoptosis, and expression of BRCA1, BRCA2, PRAB, and Erα in breast cancer cell lines (MCF-7 and MDA-MB-435). PE showed high antioxidant activity and high values of anthocyanins (74.65 ± 2.18). We observed a selective decrease in cell proliferation caused by PE in MCF-7 (ER+) cell line. Cell cycle analysis revealed that PE induced an increase in G0/G1 phase followed by a decrease in G2/M phase. Also, PE induced apoptosis in MCF-7 (ER+) cell line and suppressed BRCA1, BRCA2, PRAB, and Erα gene expression. Finally, we also demonstrate that no effect was observed with MDA-MB-435 cells (ER−) after PE treatment. Taken together, the present study suggests that pitaya may have a protective effect against breast cancer.


Sign in / Sign up

Export Citation Format

Share Document