scholarly journals An Ancestry Perspective of the Evolution of PBS1 Proteins in Plants

2021 ◽  
Vol 22 (13) ◽  
pp. 6819
Author(s):  
Edgar Yebrán Villegas-Vázquez ◽  
Beatriz Xoconostle-Cázares ◽  
Roberto Ruiz-Medrano

The AVRPPHB SUSCEPTIBLE1 (PBS1) and RESISTANCE TO PSEUDOMONAS SYRINGAE 5 (RPS5) proteins are involved in signal transduction to evoke innate plant immune response. In Arabidopsis, PBS1 is cleaved by the AvrPphB (Pseudomonas phaseolicola Avirulence protein B) protease, activating RPS5 and turning in a hypersensitive response (HR). We searched for PBS1 orthologs to trace their origin and evolution. PBS1 orthologs were found in embryophytes and in other plant taxa but with lower similarity. PBS1 phylogenetic analysis indicates high divergence, suggesting that the decoy function described for Arabidopsis PBS1 might be associated with a small fraction of orthologs. Ancestral reconstruction analysis suggests an elevated diversity in the amino acid sequence within the described motifs. All the orthologs contain the conserved PBS1 kinase subdomains, whereas the cleavage motif is present in several embryophyte orthologs but absent in most other taxa. The putative resistance recognition motifs in PBS1 orthologs are highly diverse. PBS1 cleavage site motif is exposed in some 3D structure predictions, whereas it is not in others, suggesting different modes of regulation and functions in PBS1 orthologs. Our findings suggest that PBS1 originated in the lineage that gave rise to embryophytes, with the angiosperm sequences forming a separate clade from pteridophyte proteins.

AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Maroua Oueslati ◽  
Magdalena Mulet ◽  
Mohamed Zouaoui ◽  
Charlotte Chandeysson ◽  
Jorge Lalucat ◽  
...  

Abstract The damages observed in Tunisian citrus orchards have prompted studies on the Pseudomonas spp. responsible for blast and black pit. Prospective orchards between 2015 and 2017 showed that the diseases rapidly spread geographically and to new cultivars. A screening of Pseudomonas spp. isolated from symptomatic trees revealed their wide diversity according to phylogenetic analysis of their housekeeping rpoD and cts genes. The majority of strains were affiliated to Pseudomonas syringae pv. syringae (Phylogroup PG02b), previously described in Tunisia. However, they exhibited various BOX-PCR fingerprints and were not clonal. This work demonstrated, for the first time in Tunisia, the involvement of Pseudomonas cerasi (PG02a) and Pseudomonas congelans (PG02c). The latter did not show significant pathogenicity on citrus, but was pathogenic on cantaloupe and active for ice nucleation that could play a role in the disease. A comparative phylogenetic study of citrus pathogens from Iran, Montenegro and Tunisia revealed that P. syringae (PG02b) strains are closely related but again not clonal. Interestingly P. cerasi (PG02a) was isolated in two countries and seems to outspread. However, its role in the diseases is not fully understood and it should be monitored in future studies. The diversity of pathogenic Pseudomonas spp. and the extension of the diseases highlight that they have become complex and synergistic. It opens questions about which factors favor diseases and how to fight against them efficiently and with sustainable means.


2021 ◽  
Author(s):  
Ruona Shi ◽  
Zhenhuan Feng ◽  
Xiaofei Zhang

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is currently a global pandemic. Extensive investigations have been performed to study the clinical and cellular effects of SARS-CoV-2 infection. Mass spectrometry-based proteomics studies have revealed the cellular changes due to the infection and identified a plethora of interactors for all SARS-CoV-2 components, except for the longest non-structural protein 3 (NSP3). Here, we expressed the full-length NSP3 proteins of SARS-CoV and SARS-CoV-2 to investigate their unique and shared functions using multi-omics methods. We conducted interactome, phosphoproteome, ubiquitylome, transcriptome, and proteome analyses of NSP3-expressing cells. We found that NSP3 plays essential roles in cellular functions such as RNA metabolism and immune response such as NF-kB signal transduction. Interestingly, we showed that SARS-CoV-2 NSP3 has both endoplasmic reticulum and mitochondrial localizations. In addition, SARS-CoV-2 NSP3 is more closely related to mitochondrial ribosomal proteins, whereas SARS-CoV NSP3 is related to the cytosolic ribosomal proteins. In summary, our multi-omics studies of NSP3 enhance our understanding of the functions of NSP3 and offer valuable insights for the development of anti-SARS strategies.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Horacio Bach ◽  
Melissa Richard-Greenblatt ◽  
Eviatar Bach ◽  
Marcelo Chaffer ◽  
Wanika Lai ◽  
...  

To establish infection, pathogens secrete virulence factors, such as protein kinases and phosphatases, to modulate the signal transduction pathways used by host cells to initiate immune response. The protein MAP3893c is annotated in the genome sequence ofMycobacterium aviumsubspeciesparatuberculosis(MAP), the causative agent of Johne’s disease, as the serine/threonine protein kinase G (PknG). In this work, we report that PknG is a functional kinase that is secreted within macrophages at early stages of infection. The antigen is able to induce an immune response from cattle exposed to MAP in the form of interferon gamma production after stimulation of whole blood with PknG. These findings suggest that PknG may contribute to the pathogenesis of MAP by phosphorylating macrophage signalling and/or adaptor molecules as observed with other pathogenic mycobacterial species.


1991 ◽  
Vol 173 (1) ◽  
pp. 55-64 ◽  
Author(s):  
A K Matsumoto ◽  
J Kopicky-Burd ◽  
R H Carter ◽  
D A Tuveson ◽  
T F Tedder ◽  
...  

The complement system augments the humoral immune response, possibly by a mechanism that involves the B lymphocyte membrane receptor, CR2, which binds the C3dg fragment of C3 and triggers several B cell responses in vitro. The present study demonstrates that CR2 associates with a complex of membrane proteins that may mediate signal transduction by ligated CR2. Monoclonal antibodies to CR2 immunoprecipitated from digitonin lysates of Raji B lymphoblastoid cells a membrane complex containing CR2, approximately equimolar amounts of CD19, which is a member of the immunoglobulin superfamily, and three unidentified components: p130, p50, and p20. The complex, which was immunoprecipitated also with anti-CD19, could be dissociated by Nonidet P-40, accounting for its absence in previous studies of CR2. Expression of recombinant CR2 and CD19 in K562 erythroleukemia cells led to formation of a complex that contained not only these two proteins but also p130, p50, and p20, and another component, p14. These unidentified components of the CR2/CD19 complex coimmunoprecipitated with CD19 and not with CR2 from singly transfected cells, indicating primary association with the former. CD19 replicated the capacity of CR2 to interact synergistically with mIgM for increasing free intracellular Ca2+, suggesting that the complex mediates this function of CR2. Therefore, CR2 associates directly with CD19 to become a ligand-binding subunit of a pre-existing signal transduction complex of the B cell that may be representative of a family of membrane protein complexes. This interaction between the complement and immune systems differs from that between immunoglobulin and Clq by involving membrane rather than plasma proteins, and by having complement involved in the afferent phase of the immune response.


2004 ◽  
Vol 6 (14) ◽  
pp. 1333-1338 ◽  
Author(s):  
Takashi Kobayashi ◽  
Matthew C. Walsh ◽  
Yongwon Choi

Sign in / Sign up

Export Citation Format

Share Document