scholarly journals Reprogramming mRNA Expression in Response to Defect in RNA Polymerase III Assembly in the Yeast Saccharomyces cerevisiae

2021 ◽  
Vol 22 (14) ◽  
pp. 7298
Author(s):  
Izabela Rudzińska ◽  
Małgorzata Cieśla ◽  
Tomasz W. Turowski ◽  
Alicja Armatowska ◽  
Ewa Leśniewska ◽  
...  

The coordinated transcription of the genome is the fundamental mechanism in molecular biology. Transcription in eukaryotes is carried out by three main RNA polymerases: Pol I, II, and III. One basic problem is how a decrease in tRNA levels, by downregulating Pol III efficiency, influences the expression pattern of protein-coding genes. The purpose of this study was to determine the mRNA levels in the yeast mutant rpc128-1007 and its overdose suppressors, RBS1 and PRT1. The rpc128-1007 mutant prevents assembly of the Pol III complex and functionally mimics similar mutations in human Pol III, which cause hypomyelinating leukodystrophies. We applied RNAseq followed by the hierarchical clustering of our complete RNA-seq transcriptome and functional analysis of genes from the clusters. mRNA upregulation in rpc128-1007 cells was generally stronger than downregulation. The observed induction of mRNA expression was mostly indirect and resulted from the derepression of general transcription factor Gcn4, differently modulated by suppressor genes. rpc128-1007 mutation, regardless of the presence of suppressors, also resulted in a weak increase in the expression of ribosome biogenesis genes. mRNA genes that were downregulated by the reduction of Pol III assembly comprise the proteasome complex. In summary, our results provide the regulatory links affected by Pol III assembly that contribute differently to cellular fitness.

2019 ◽  
Author(s):  
Nicolas Bonhoure ◽  
Viviane Praz ◽  
Robyn D. Moir ◽  
Gilles Willemin ◽  
François Mange ◽  
...  

AbstractMaf1-/- mice are lean, obesity-resistant and metabolically inefficient. Their increased energy expenditure is thought to be driven by a futile RNA cycle that reprograms metabolism to meet an increased demand for nucleotides stemming from the deregulation of RNA polymerase (pol) III transcription. Metabolic changes consistent with this model have been reported in both fasted and refed mice, however the impact of the fasting-refeeding-cycle on pol III function has not been examined. Here we show that changes in pol III occupancy in the liver of fasted versus refed wild-type mice are largely confined to low and intermediate occupancy genes; high occupancy genes are unchanged. However, in Maf1-/- mice, pol III occupancy of the vast majority of active loci in liver and the levels of specific precursor tRNAs in this tissue and other organs are higher than wild-type in both fasted and refed conditions. Thus, MAF1 functions as a chronic repressor of active pol III loci and can modulate transcription under different conditions. Our findings support the futile RNA cycle hypothesis, elaborate the mechanism of pol III repression by MAF1 and demonstrate a modest effect of MAF1 on global translation via reduced mRNA levels and translation efficiencies for several ribosomal proteins.


2021 ◽  
Vol 22 (21) ◽  
pp. 11314
Author(s):  
Hailiang Zhao ◽  
Yao Qin ◽  
Ziyi Xiao ◽  
Kun Liang ◽  
Dianming Gong ◽  
...  

RNA polymerase III (RNAPIII) contains 17 subunits forming 4 functional domains that control the different stages of RNAPIII transcription and are dedicated to the synthesis of small RNAs such as 5S rRNA and tRNAs. Here, we identified 23 genes encoding these subunits in Arabidopsis (Arabidopsis thaliana) and further analyzed 5 subunits (NRPC2, NRPC3, NRPC8, NRPABC1, and NRPABC2) encoded by 6 genes with different expression patterns and belonging to different sub-complexes. The knockdown of these genes repressed the expression of 5S rRNA and tRNAs, causing seed developmental arrest at different stages. Among these knockdown mutants, RNA-seq analysis revealed 821 common differentially expressed genes (DEGs), significantly enriched in response to stress, abscisic acid, cytokinins, and the jasmonic acid signaling pathway. Weighted gene co-expression network analysis (WGCNA) revealed several hub genes involved in embryo development, carbohydrate metabolic and lipid metabolic processes. We identified numerous unique DEGs between the mutants belonging to pathways, including cell proliferation, ribosome biogenesis, cell death, and tRNA metabolic processes. Thus, NRPC2, NRPC3, NRPC8, NRPABC1, and NRPABC2 control seed development in Arabidopsis by influencing RNAPIII activity and, thus, hormone signaling. Reduced expression of these subunit genes causes an insufficient accumulation of the total RNAPIII, leading to the phenotypes observed following the genetic knockdown of these subunits.


2018 ◽  
Vol 19 (12) ◽  
pp. 3757 ◽  
Author(s):  
Sivakumar Vadivel Gnanasundram ◽  
Robin Fåhraeus

Ribosome and protein synthesis are major metabolic events that control cellular growth and proliferation. Impairment in ribosome biogenesis pathways and mRNA translation is associated with pathologies such as cancer and developmental disorders. Processes that control global protein synthesis are tightly regulated at different levels by numerous factors and linked with multiple cellular signaling pathways. Several of these merge on the growth promoting factor c-Myc, which induces ribosome biogenesis by stimulating Pol I, Pol II, and Pol III transcription. However, how cells sense and respond to mRNA translation stress is not well understood. It was more recently shown that mRNA translation stress activates c-Myc, through a specific induction of E2F1 synthesis via a PI3Kδ-dependent pathway. This review focuses on how this novel feedback pathway stimulates cellular growth and proliferation pathways to synchronize protein synthesis with ribosome biogenesis. It also describes for the first time the oncogenic activity of the mRNA, and not the encoded protein.


2015 ◽  
Vol 35 (7) ◽  
pp. 1169-1181 ◽  
Author(s):  
Małgorzata Cieśla ◽  
Ewa Makała ◽  
Marta Płonka ◽  
Rafał Bazan ◽  
Kamil Gewartowski ◽  
...  

Little is known about the RNA polymerase III (Pol III) complex assembly and its transport to the nucleus. We demonstrate that a missense cold-sensitive mutation,rpc128-1007, in the sequence encoding the C-terminal part of the second largest Pol III subunit, C128, affects the assembly and stability of the enzyme. The cellular levels and nuclear concentration of selected Pol III subunits were decreased inrpc128-1007cells, and the association between Pol III subunits as evaluated by coimmunoprecipitation was also reduced. To identify the proteins involved in Pol III assembly, we performed a genetic screen for suppressors of therpc128-1007mutation and selected the Rbs1 gene, whose overexpression enhancedde novotRNA transcription inrpc128-1007cells, which correlated with increased stability, nuclear concentration, and interaction of Pol III subunits. Therpc128-1007 rbs1Δ double mutant shows a synthetic growth defect, indicating thatrpc128-1007andrbs1Δ function in parallel ways to negatively regulate Pol III assembly. Rbs1 physically interacts with a subset of Pol III subunits, AC19, AC40, and ABC27/Rpb5. Additionally, Rbs1 interacts with the Crm1 exportin and shuttles between the cytoplasm and nucleus. We postulate that Rbs1 binds to the Pol III complex or subcomplex and facilitates its translocation to the nucleus.


1999 ◽  
Vol 19 (7) ◽  
pp. 4927-4934 ◽  
Author(s):  
Christopher G. C. Larminie ◽  
Josephine E. Sutcliffe ◽  
Kerrie Tosh ◽  
Andrew G. Winter ◽  
Zoe A. Felton-Edkins ◽  
...  

ABSTRACT RNA polymerase (Pol) III transcription is abnormally active in fibroblasts that have been transformed by simian virus 40 (SV40). This report presents evidence that two separate components of the general Pol III transcription apparatus, TFIIIB and TFIIIC2, are deregulated following SV40 transformation. TFIIIC2 subunits are expressed at abnormally high levels in SV40-transformed cells, an effect which is observed at both protein and mRNA levels. In untransformed fibroblasts, TFIIIB is subject to repression through association with the retinoblastoma protein RB. The interaction between RB and TFIIIB is compromised following SV40 transformation. Furthermore, the large T antigen of SV40 is shown to relieve repression by RB. The E7 oncoprotein of human papillomavirus can also activate Pol III transcription, an effect that is dependent on its ability to bind to RB. The data provide evidence that both TFIIIB and TFIIIC2 are targets for activation by DNA tumor viruses.


1992 ◽  
Vol 12 (6) ◽  
pp. 2644-2652 ◽  
Author(s):  
S D Brown ◽  
J Huang ◽  
L H Van der Ploeg

All eukaryotic protein-coding genes are believed to be transcribed by RNA polymerase (Pol) II. An exception may exist in the protozoan parasite Trypanosoma brucei, in which the genes encoding the variant surface glycoprotein (VSG) and procyclic acidic repetitive protein (PARP) are transcribed by an RNA polymerase that is resistant to the Pol II inhibitor alpha-amanitin. The PARP and VSG genes were proposed to be transcribed by Pol I (C. Shea, M. G.-S. Lee, and L. H. T. Van der Ploeg, Cell 50:603-612, 1987; G. Rudenko, M. G.-S. Lee, and L. H. T. Van der Ploeg, Nucleic Acids Res. 20:303-306, 1992), a suggestion that has been substantiated by the finding that trypanosomes can transcribe protein-coding genes by Pol I (G. Rudenko, H.-M. Chung, V. P. Pham, and L. H. T. Van der Ploeg, EMBO J. 10:3387-3397, 1991). We analyzed the sequence elements of the PARP promoter by linker scanning mutagenesis and compared the PARP promoter with Pol I, Pol II, and Pol III promoters. The PARP promoter appeared to be of limited complexity and contained at least two critical regions. The first was located adjacent to the transcription initiation site (nucleotides [nt] -69 to +12) and contained three discrete domains in which linker scanning mutants affected the transcriptional efficiency: at nt -69 to -56, -37 to -11, and -11 to +12. The second region was located between nt -140 and -131, and a third region may be located between nt -228 and -205. The nucleotide sequences of these elements, and their relative positioning with respect to the transcription initiation site did not resemble those of either Pol II or Pol III promoter elements, but rather reflected the organization of Pol I promoters in (i) similarity in the positioning of essential domains in the PARP promoter and Pol I promoter, (ii) strong sequence homology between the PARP core promoter element (nt -37 to -11) and identically positioned nucleotide sequences in the trypanosome rRNA and VSG gene promoters, and (iii) moderate effects on promoter activity of mutations around the transcription initiation site.


2005 ◽  
Author(s):  
◽  
Qun Zheng

In eukaryotes, two large subunits form the core catalytic structure of RNA polymerase III (Pol III), which is conserved in other RNA polymerases, Pol I and Pol II. It has been found that Pol III activity is tightly associated to cell growth. TFIII B has been shown to be one of main mediators in this process. No regulation of the Pol III largest subunit gene has been found. In C. elegans, the rpc-1 gene encodes the largest subunit of Pol III. Here, I identified two critical structural components of RPC-1, Gly644 and Gly1055, whose mutations result in larval lethal arrestment. These two amino acid residues are universally conserved in RNA polymerases, indicating their overall involvement in gene transcription mechanism. Also, I found that maternally inherited, not embryonically expressed, rpc-1 gene products survive early development. Starvation was found to suppress rpc-1 gene expression and re-feeding treatment enhances rpc-1 gene expression rapidly. No similar regulation was detected in genes encoding largest subunits of Pol I and Pol II. This is the first time that rpc-1 gene regulation has been reported. Insulin signaling may not be involved in this regulation. Also, I found that rpc-1 promoter is not ubiquitously active in C. elegans. Using the rpc-1p::gfp transgene, the rpc-1 promoter activity is only detected in a subset of neurons in the head and the tail and the intestine. While starvation silences the rpc-1 promoter activity in most tissues and cells, ASK neurons still show GFP staining in the rpc-1p::gfp transgenic animals, indicating that rpc-1 transcription in ASK neurons is continuously active under starvation conditions. Further studies suggest that TGF-[beta] signaling is involved in mediating the rpc-1 promoter activity in ASK neurons.


2018 ◽  
Author(s):  
Pratibha Bhalla ◽  
Dipti Vernekar ◽  
Ashutosh Shukla ◽  
Benoit Gilquin ◽  
Yohann Couté ◽  
...  

AbstractMany regulatory proteins and complexes influence transcription by RNA polymerase (pol) II. In comparison, only a few regulatory proteins are known for pol III, which transcribes mostly house-keeping and non-coding genes. Yet, pol III transcription is precisely regulated under various stress conditions like starvation. We used pol III transcription complex components TFIIIC (Tfc6), pol III (Rpc128) and TFIIIB (Brf1) as baits to identify potential interactors through mass spectrometry-based proteomics. A large interactome constituting known chromatin modifiers, factors and regulators of transcription by pol I and pol II revealed the possibility of a large number of signaling cues for pol III transcription against adverse conditions. We found one of the pol II-associated factors, Paf1 complex (PAF1C) interacts with the three baits. Its occupancy on the pol III-transcribed genes is low and not correlated with pol III occupancy. Paf1 deletion leads to higher occupancy of pol III, γ-H2A and DNA pol2 but no change in nucleosome positions. Genotoxins exposure causes pol III but not Paf1 loss from the genes. PAF1C promotes the pol III pausing and restricts its accumulation on the genes, which reduces the replication stress caused by the pol III barrier and transcription-replication conflict on these highly transcribed genes.


Genetics ◽  
1999 ◽  
Vol 152 (3) ◽  
pp. 869-880 ◽  
Author(s):  
Toshiharu Shibuya ◽  
Satomi Tsuneyoshi ◽  
Abul Kalam Azad ◽  
Seiichi Urushiyama ◽  
Yasumi Ohshima ◽  
...  

Abstract Transport of mRNA from the nucleus to the cytoplasm is one of the important steps in gene expression in eukaryotic cells. To elucidate a mechanism of mRNA export, we identified a novel ptr [poly(A)+ RNA transport] mutation, ptr6, which causes accumulation of mRNA in the nucleus and inhibition of growth at the nonpermissive temperature. The ptr6+ gene was found to encode an essential protein of 393 amino acids, which shares significant homology in amino acid sequence with yTAFII67 of budding yeast Saccharomyces cerevisiae and human hTAFII55, a subunit of the general transcription factor complex TFIID. A Ptr6p-GFP fusion protein is localized in the nucleus, suggesting that Ptr6p functions there. Northern blot analysis using probes for 10 distinct mRNAs showed that the amount of tbp+ mRNA encoding the TATA-binding protein is increased five- to sixfold, whereas amounts of others are rapidly decreased at the nonpermissive temperature in ptr6-1. ptr6 has no defects in nuclear import of an NLS-GFP fusion protein. These results suggest that Ptr6p required for mRNA transport is a Schizosaccharomyces pombe homologue of yTAFII67 and hTAFII55. This is the first report suggesting that a TAF is involved in the nucleocytoplasmic transport of mRNA in addition to the transcription of the protein-coding genes.


1992 ◽  
Vol 12 (6) ◽  
pp. 2644-2652
Author(s):  
S D Brown ◽  
J Huang ◽  
L H Van der Ploeg

All eukaryotic protein-coding genes are believed to be transcribed by RNA polymerase (Pol) II. An exception may exist in the protozoan parasite Trypanosoma brucei, in which the genes encoding the variant surface glycoprotein (VSG) and procyclic acidic repetitive protein (PARP) are transcribed by an RNA polymerase that is resistant to the Pol II inhibitor alpha-amanitin. The PARP and VSG genes were proposed to be transcribed by Pol I (C. Shea, M. G.-S. Lee, and L. H. T. Van der Ploeg, Cell 50:603-612, 1987; G. Rudenko, M. G.-S. Lee, and L. H. T. Van der Ploeg, Nucleic Acids Res. 20:303-306, 1992), a suggestion that has been substantiated by the finding that trypanosomes can transcribe protein-coding genes by Pol I (G. Rudenko, H.-M. Chung, V. P. Pham, and L. H. T. Van der Ploeg, EMBO J. 10:3387-3397, 1991). We analyzed the sequence elements of the PARP promoter by linker scanning mutagenesis and compared the PARP promoter with Pol I, Pol II, and Pol III promoters. The PARP promoter appeared to be of limited complexity and contained at least two critical regions. The first was located adjacent to the transcription initiation site (nucleotides [nt] -69 to +12) and contained three discrete domains in which linker scanning mutants affected the transcriptional efficiency: at nt -69 to -56, -37 to -11, and -11 to +12. The second region was located between nt -140 and -131, and a third region may be located between nt -228 and -205. The nucleotide sequences of these elements, and their relative positioning with respect to the transcription initiation site did not resemble those of either Pol II or Pol III promoter elements, but rather reflected the organization of Pol I promoters in (i) similarity in the positioning of essential domains in the PARP promoter and Pol I promoter, (ii) strong sequence homology between the PARP core promoter element (nt -37 to -11) and identically positioned nucleotide sequences in the trypanosome rRNA and VSG gene promoters, and (iii) moderate effects on promoter activity of mutations around the transcription initiation site.


Sign in / Sign up

Export Citation Format

Share Document