scholarly journals The Functional Diversity of Nitric Oxide Synthase Isoforms in Human Nose and Paranasal Sinuses: Contrasting Pathophysiological Aspects in Nasal Allergy and Chronic Rhinosinusitis

2021 ◽  
Vol 22 (14) ◽  
pp. 7561
Author(s):  
Tomohiro Kawasumi ◽  
Sachio Takeno ◽  
Chie Ishikawa ◽  
Daisuke Takahara ◽  
Takayuki Taruya ◽  
...  

The human paranasal sinuses are the major source of intrinsic nitric oxide (NO) production in the human airway. NO plays several roles in the maintenance of physiological homeostasis and the regulation of airway inflammation through the expression of three NO synthase (NOS) isoforms. Measuring NO levels can contribute to the diagnosis and assessment of allergic rhinitis (AR) and chronic rhinosinusitis (CRS). In symptomatic AR patients, pro-inflammatory cytokines upregulate the expression of inducible NOS (iNOS) in the inferior turbinate. Excessive amounts of NO cause oxidative damage to cellular components, leading to the deposition of cytotoxic substances. CRS phenotype and endotype classifications have provided insights into modern treatment strategies. Analyses of the production of sinus NO and its metabolites revealed pathobiological diversity that can be exploited for useful biomarkers. Measuring nasal NO based on different NOS activities is a potent tool for specific interventions targeting molecular pathways underlying CRS endotype-specific inflammation. We provide a comprehensive review of the functional diversity of NOS isoforms in the human sinonasal system in relation to these two major nasal disorders’ pathologies. The regulatory mechanisms of NOS expression associated with the substrate bioavailability indicate the involvement of both type 1 and type 2 immune responses.

2002 ◽  
Vol 283 (6) ◽  
pp. L1192-L1199 ◽  
Author(s):  
Philip W. Shaul ◽  
Sam Afshar ◽  
Linda L. Gibson ◽  
Todd S. Sherman ◽  
Jay D. Kerecman ◽  
...  

Nitric oxide (NO), produced by NO synthase (NOS), plays a critical role in multiple processes in the lung during the perinatal period. To better understand the regulation of pulmonary NO production in the developing primate, we determined the cell specificity and developmental changes in NOS isoform expression and action in the lungs of third-trimester fetal baboons. Immunohistochemistry in lungs obtained at 175 days (d) of gestation (term = 185 d) revealed that all three NOS isoforms, neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS), are primarily expressed in proximal airway epithelium. In proximal lung, there was a marked increase in total NOS enzymatic activity from 125 to 140 d gestation due to elevations in nNOS and eNOS, whereas iNOS expression and activity were minimal. Total NOS activity was constant from 140 to 175 d gestation, and during the latter stage (160–175 d gestation), a dramatic fall in nNOS and eNOS was replaced by a rise in iNOS. Studies done within 1 h of delivery at 125 or 140 d gestation revealed that the principal increase in NOS during the third trimester is associated with an elevation in exhaled NO levels, a decline in expiratory resistance, and greater pulmonary compliance. Thus, there are developmental increases in pulmonary NOS expression and NO production during the early third trimester in the primate that may enhance airway and parenchymal function in the immediate postnatal period.


2018 ◽  
Vol 141 (2) ◽  
pp. AB270
Author(s):  
Kanako Yoshida ◽  
Tetsuji Takabayashi ◽  
Masafumi Sakashita ◽  
Yoshimasa Imoto ◽  
Norihiko Narita ◽  
...  

1994 ◽  
Vol 267 (4) ◽  
pp. F509-F515 ◽  
Author(s):  
A. Tojo ◽  
N. J. Guzman ◽  
L. C. Garg ◽  
C. C. Tisher ◽  
K. M. Madsen

Nitric oxide (NO) is a messenger molecule that is produced from L-arginine by NO synthase (NOS). Some NOS isoforms are present in cells constitutively, whereas others can be induced by cytokines. Recent evidence suggests that NO inhibits intracellular pH regulation by the vacuolar H(+)-adenosinetriphosphatase (ATPase) in macrophages, which contain an inducible form of NOS. The vacuolar H(+)-ATPase is involved in proton secretion in intercalated cells in the collecting duct. We have therefore examined the effect of NO on bafilomycin-sensitive H(+)-ATPase activity in individual cortical collecting ducts (CCD) microdissected from collagenase-treated kidneys of normal rats using a fluorometric microassay. Incubation of CCD with the NO donors, sodium nitroprusside (0.1 and 1 mM) or 3-morpholino-sydnonimine hydrochloride (SIN-1, 30 microM), caused a dose-dependent decrease in H(+)-ATPase activity. Incubation of CCD with lipopolysaccharide (LPS) and interferon-gamma, which induces NOS in macrophages, decreased H(+)-ATPase activity by 85%. This effect was prevented by simultaneous incubation with N omega-nitro-L-arginine, a competitive inhibitor of NOS, indicating that the decrease in H(+)-ATPase activity was caused by NO production. Incubation with 8-bromo-guanosine 3',5'-cyclic monophosphate (cGMP) also inhibited H(+)-ATPase activity, suggesting that NO may exert its effect in the CCD via activation of guanylyl cyclase and production of cGMP. Immunohistochemistry using antibodies to the macrophage-type NOS revealed strong labeling of intercalated cells in the CCD, confirming the presence of NOS in these cells.(ABSTRACT TRUNCATED AT 250 WORDS)


2001 ◽  
Vol 281 (5) ◽  
pp. G1264-G1270 ◽  
Author(s):  
Flavia Mulè ◽  
Maria Giuliana Vannucchi ◽  
Letizia Corsani ◽  
Rosa Serio ◽  
Maria Simonetta Faussone-Pellegrini

The aim of the present study was to evaluate whether alterations in the distribution and/or function of nitric oxide synthase (NOS) could be involved in the development of the spontaneous mechanical tone observed in colon from dystrophic ( mdx) mice. By recording the intraluminal pressure of isolated colon from normal mice, we showed that N ω-nitro- l-arginine methyl ester (l-NAME) increased the tone, even in the presence of tetrodotoxin. The effect was prevented by l-arginine, nifedipine, or Ca2+-free solution. In colon from mdx mice, l-NAME was ineffective. Immunohistochemistry revealed that the presence and distribution of neuronal (nNOS), endothelial, and inducible NOS isoforms in smooth muscle cells and neurons of colon from mdx mice were the same as in controls. However, the expression of myogenic nNOS was markedly reduced in mdx mice. We conclude that there is a myogenic NOS in mouse colon that can tonically produce nitric oxide to limit influx of Ca2+ through L-type voltage-dependent channels and modulate the mechanical tone. This mechanism appears to be defective in mdx mice.


2002 ◽  
Vol 282 (4) ◽  
pp. C762-C767 ◽  
Author(s):  
Tatsuya Takizawa ◽  
Hiroshi Yoshikawa ◽  
Miho Yamada ◽  
Hidetoshi Morita

Nitric oxide (NO) production in the rat placenta was monitored and quantified by electron paramagnetic resonance (EPR) spectroscopy with hemoglobin and an Fe- N-(dithiocarboxy)sarcosine (DTCS) complex as NO-trapping reagents. Expression of nitric oxide synthase (NOS) isoforms was also examined by quantitative RT-PCR analysis. The EPR spectrum of the placenta with hemoglobin trapping showed a three-line hyperfine structure ( g = 2.008 and a = 1.66-mT). The EPR signal was diminished after the placenta was homogenized or the NOS inhibitor l-NAME was administered to pregnant rats. Therefore, the specific signal was definitely identified as being derived from endogenous NO spin-trapped by hemoglobin, and the EPR spectrum showed that the NO adduct existed as a pentacoordinate α-NO heme species. The EPR spectrum of the placenta with Fe-DTCS trapping showed a triplet signal ( g = 2.038) derived from an NO-Fe-DTCS complex. The height of the triplet signal did not vary significantly with gestational stage during the last few days of gestation. At the gestational stages examined, the level of NOS II mRNA expression was significantly higher than that of NOS III mRNA. NOS II expression in term ( day 21.5) placenta was significantly increased compared with that in preterm ( day 19.5) placenta ( P < 0.01, n = 4 or 5). These results suggest that NOS II is the predominant producer of NO in the placenta and that NOS II-generated NO plays significant roles in the maintenance of placental functions immediately before birth.


2007 ◽  
Vol 293 (2) ◽  
pp. R662-R668 ◽  
Author(s):  
M. C. Baccari ◽  
S. Nistri ◽  
M. G. Vannucchi ◽  
F. Calamai ◽  
D. Bani

Altered nitric oxide (NO) production/release is involved in gastrointestinal motor disorders occurring in dystrophic (mdx) mice. Since the hormone relaxin (RLX) can upregulate NO biosynthesis, its effects on spontaneous motility and NO synthase (NOS) expression in the ileum of dystrophic (mdx) mice were investigated. Mechanical responses of ileal preparations were recorded in vitro via force-displacement transducers. Evaluation of the expression of NOS isoforms was performed by immunohistochemistry and Western blot. Normal and mdx mice were distributed into three groups: untreated, RLX pretreated, and vehicle pretreated. Ileal preparations from the untreated animals showed spontaneous muscular contractions whose amplitude was significantly higher in mdx than in normal mice. Addition of RLX, alone or together with l-arginine, to the bath medium depressed the amplitude of the contractions in the mdx mice, thus reestablishing a motility pattern typical of the normal mice. The NOS inhibitor NG-nitro-l-arginine (l-NNA) or the guanylate cyclase inhibitor ODQ reversed the effects of RLX. In RLX-pretreated mdx mice, the amplitude of spontaneous motility was reduced, thus resembling that of the normal mice, and NOS II expression in the muscle coat was increased in respect to the vehicle-pretreated mdx animals. These results indicate that RLX can reverse the altered ileal motility of mdx mice to a normal pattern, likely by upregulating NOS II expression and NO biosynthesis in the ileal smooth muscle.


2022 ◽  
Vol 20 ◽  
pp. 205873922110529
Author(s):  
Kota Takemoto ◽  
Sachio Takeno ◽  
Takashi Ishino ◽  
Tsutomu Ueda ◽  
Takao Hamamoto ◽  
...  

Introduction Nitric oxide (NO) is synthesized through NO synthase (NOS). The proximal NOS2 gene promoter contains the pentanucleotide CCTTT repeat polymorphism. We examined whether CCTTT repeats are associated with NOS2 expression in the sinonasal tissues and clinical manifestations in patients with chronic rhinosinusitis. Methods Mucosal specimens were obtained from the ethmoid sinus and inferior turbinate of 30 eosinophilic chronic rhinosinusitis (ECRS) and 28 non-ECRS patients. CCTTT repeats were classified into short alleles (S), with less than or equal to 14, and long alleles (L), with more than 14. The subjects were classified into the L/S + L/L and S/S groups. Results In ECRS, the NOS2 mRNA levels of the ethmoid sinus mucosa were significantly higher in the L/S + L/L group than in the S/S group (median, 1.66 and 0.77, respectively). On the ther hand, ECRS patients showed no significant difference in the NOS2 mRNA level of the inferior turbinate between the L/S + L/L group and the S/S group (median, 0.63 and 0.88, respectively). In ECRS, preoperative SNOT-22 were significantly higher in the L/S + L/L group than in the S/S group, whereas the former group showed a lower postoperative recurrence risk. Conclusion CCTTT repeat polymorphism in the NOS2 promotor gene may be a useful indicator to evaluate ECRS severity and prognosis.


2003 ◽  
Vol 285 (4) ◽  
pp. E871-E875 ◽  
Author(s):  
Marcella M. Hallemeesch ◽  
Ben J. A. Janssen ◽  
Wouter J. de Jonge ◽  
Peter B. Soeters ◽  
Wouter H. Lamers ◽  
...  

Increased nitric oxide (NO) production is the cause of hypotension and shock during sepsis. In the present experiments, we have measured the contribution of endothelial (e) and inducible (i) nitric oxide synthase (NOS) to systemic NO production in mice under baseline conditions and upon LPS treatment (100 μg/10 g ip LPS). NO synthesis was measured by the rate of conversion of l-[ guanidino-15N2]arginine to l-[ ureido-15N]citrulline, and the contribution of the specific NOS isoforms was evaluated by comparing NO production in eNOS-deficient [(–/–)] and iNOS(–/–) mice with that in wild-type (WT) mice. Under baseline conditions, NO production was similar in WT and iNOS(–/–) mice but lower in eNOS(–/–) mice [WT: 1.2 ± 0.2; iNOS(–/–): 1.2 ± 0.2; eNOS(–/–): 0.6 ± 0.3 nmol · 10 g body wt–1· min–1]. In response to the challenge with LPS (5 h), systemic NO production increased in WT and eNOS(–/–) mice but fell in iNOS(–/–) mice [WT: 2.7 ± 0.3; eNOS(–/–): 2.2 ± 0.6; iNOS(–/–): 0.7 ± 0.1 nmol · 10 g body wt–1· min–1]. After 5 h of LPS treatment, blood pressure had dropped 14 mmHg in WT but not in iNOS(–/–) mice. The present findings provide firm evidence that, upon treatment with bacterial LPS, the increase of NO production is solely dependent on iNOS, whereas that mediated by cNOS is reduced. Furthermore, the data show that the LPS-induced blood pressure response is dependent on iNOS.


2005 ◽  
Vol 98 (6) ◽  
pp. 2064-2071 ◽  
Author(s):  
Lars Menzel ◽  
Alexander Hess ◽  
Wilhelm Bloch ◽  
Olaf Michel ◽  
Klaus-Dieter Schuster ◽  
...  

In this study, the temporal shape of voice-induced nitric oxide (NO) signals in exhaled air has been investigated in eight healthy individuals by means of laser magnetic resonance spectroscopy. The results of the experimental part have been compared with calculated signals obtained by using a simple one-compartment model of the paranasal sinuses. In the experimental part, a rapidly increasing NO concentration has been found when the subjects started humming. After reaching a maximum, the emission starts to decrease with the shape of an exponential decay and finally reaches a constant level. The time constant of this decay (NO washout) is 3.0 ± 1.2 s. The peak height of the NO emission during humming increases when the time between two humming processes increases. When no voice-induced NO emission takes place, the NO concentration in the paranasal sinuses rebuilds again to a maximum concentration. The typical time constant for the NO recovery is 4.5 ± 3.2 min. A three-compartment model defining exactly the geometry and anatomy of the paranasal sinuses has been developed that is based on three main assumptions of the NO dynamics: 1) constant NO production of the epithelium in the sinuses; 2) the rate of the chemical reaction of NO with the epithelium of the paranasal sinuses is proportional to the NO concentration; and 3) the emission of NO from the sinuses (volume/s) is proportional to the NO concentration. It is shown that the three-compartment model under the experimental conditions can be reduced to a one-compartment model, which describes the complete temporal behavior of the NO exchange.


2001 ◽  
Vol 280 (4) ◽  
pp. L575-L582 ◽  
Author(s):  
Timothy D. Le Cras ◽  
Ivan F. McMurtry

Nitric oxide (NO) is a potent vasodilator and inhibitor of vascular remodeling. Reduced NO production has been implicated in the pathophysiology of pulmonary hypertension, with endothelial NO synthase (NOS) knockout mice showing an increased risk for pulmonary hypertension. Because molecular oxygen (O2) is an essential substrate for NO synthesis by the NOSs and biochemical studies using purified NOS isoforms have estimated the Michaelis-Menten constant values for O2 to be in the physiological range, it has been suggested that O2substrate limitation may limit NO production in various pathophysiological conditions including hypoxia. This review summarizes numerous studies of the effects of acute and chronic hypoxia on NO production in the lungs of humans and animals as well as in cultured vascular cells. In addition, the effects of hypoxia on NOS expression and posttranslational regulation of NOS activity by other proteins are also discussed. Most studies found that hypoxia limits NO synthesis even when NOS expression is increased.


Sign in / Sign up

Export Citation Format

Share Document