scholarly journals Autophagy Mediates the Degradation of Plant ESCRT Component FREE1 in Response to Iron Deficiency

2021 ◽  
Vol 22 (16) ◽  
pp. 8779
Author(s):  
Tianrui Zhang ◽  
Zhidan Xiao ◽  
Chuanliang Liu ◽  
Chao Yang ◽  
Jiayi Li ◽  
...  

Multivesicular body (MVB)-mediated endosomal sorting and macroautophagy are the main pathways mediating the transport of cellular components to the vacuole and are essential for maintaining cellular homeostasis. The interplay of these two pathways remains poorly understood in plants. In this study, we show that FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1), which was previously identified as a plant-specific component of the endosomal sorting complex required for transport (ESCRT), essential for MVB biogenesis and plant growth, can be transported to the vacuole for degradation in response to iron deficiency. The vacuolar transport of ubiquitinated FREE1 protein is mediated by the autophagy pathway. As a consequence, the autophagy deficient mutants, atg5-1 and atg7-2, accumulate more endogenous FREE1 protein and display hypersensitivity to iron deficiency. Furthermore, under iron-deficient growth condition autophagy related genes are upregulated to promote the autophagic degradation of FREE1, thereby possibly relieving the repressive effect of FREE1 on iron absorption. Collectively, our findings demonstrate a unique regulatory mode of protein turnover of the ESCRT machinery through the autophagy pathway to respond to iron deficiency in plants.

2015 ◽  
Vol 112 (6) ◽  
pp. 1886-1891 ◽  
Author(s):  
Caiji Gao ◽  
Xiaohong Zhuang ◽  
Yong Cui ◽  
Xi Fu ◽  
Yilin He ◽  
...  

Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic degradation requires functional endosomal sorting complex required for transport (ESCRT) machinery. However, the interplay between the ESCRT machinery and the autophagy regulator remains unclear. Here, we show that FYVE domain protein required for endosomal sorting 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body (MVB) biogenesis and plant growth, plays roles both in vacuolar protein transport and autophagic degradation. FREE1 also regulates vacuole biogenesis in both seeds and vegetative cells of Arabidopsis. Additionally, FREE1 interacts directly with a unique plant autophagy regulator SH3 DOMAIN-CONTAINING PROTEIN2 and associates with the PI3K complex, to regulate the autophagic degradation in plants. Thus, FREE1 plays multiple functional roles in vacuolar protein trafficking and organelle biogenesis as well as in autophagic degradation via a previously unidentified regulatory mechanism of cross-talk between the ESCRT machinery and autophagy process.


2019 ◽  
Vol 218 (10) ◽  
pp. 3336-3354 ◽  
Author(s):  
Yoshinori Takahashi ◽  
Xinwen Liang ◽  
Tatsuya Hattori ◽  
Zhenyuan Tang ◽  
Haiyan He ◽  
...  

The process of phagophore closure requires the endosomal sorting complex required for transport III (ESCRT-III) subunit CHMP2A and the AAA ATPase VPS4, but their regulatory mechanisms remain unknown. Here, we establish a FACS-based HaloTag-LC3 autophagosome completion assay to screen a genome-wide CRISPR library and identify the ESCRT-I subunit VPS37A as a critical component for phagophore closure. VPS37A localizes on the phagophore through the N-terminal putative ubiquitin E2 variant domain, which is found to be required for autophagosome completion but dispensable for ESCRT-I complex formation and the degradation of epidermal growth factor receptor in the multivesicular body pathway. Notably, loss of VPS37A abrogates the phagophore recruitment of the ESCRT-I subunit VPS28 and CHMP2A, whereas inhibition of membrane closure by CHMP2A depletion or VPS4 inhibition accumulates VPS37A on the phagophore. These observations suggest that VPS37A coordinates the recruitment of a unique set of ESCRT machinery components for phagophore closure in mammalian cells.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shweta V. Pipaliya ◽  
Rui Santos ◽  
Dayana Salas-Leiva ◽  
Erina A. Balmer ◽  
Corina D. Wirdnam ◽  
...  

Abstract Background Comparing a parasitic lineage to its free-living relatives is a powerful way to understand how that evolutionary transition to parasitism occurred. Giardia intestinalis (Fornicata) is a leading cause of gastrointestinal disease world-wide and is famous for its unusual complement of cellular compartments, such as having peripheral vacuoles instead of typical endosomal compartments. Endocytosis plays an important role in Giardia’s pathogenesis. Endosomal sorting complexes required for transport (ESCRT) are membrane-deforming proteins associated with the late endosome/multivesicular body (MVB). MVBs are ill-defined in G. intestinalis, and roles for identified ESCRT-related proteins are not fully understood in the context of its unique endocytic system. Furthermore, components thought to be required for full ESCRT functionality have not yet been documented in this species. Results We used genomic and transcriptomic data from several Fornicata species to clarify the evolutionary genome streamlining observed in Giardia, as well as to detect any divergent orthologs of the Fornicata ESCRT subunits. We observed differences in the ESCRT machinery complement between Giardia strains. Microscopy-based investigations of key components of ESCRT machinery such as GiVPS36 and GiVPS25 link them to peripheral vacuoles, highlighting these organelles as simplified MVB equivalents. Unexpectedly, we show ESCRT components associated with the endoplasmic reticulum and, for the first time, mitosomes. Finally, we identified the rare ESCRT component CHMP7 in several fornicate representatives, including Giardia and show that contrary to current understanding, CHMP7 evolved from a gene fusion of VPS25 and SNF7 domains, prior to the last eukaryotic common ancestor, over 1.5 billion years ago. Conclusions Our findings show that ESCRT machinery in G. intestinalis is far more varied and complete than previously thought, associates to multiple cellular locations, and presents changes in ESCRT complement which pre-date adoption of a parasitic lifestyle.


2007 ◽  
Vol 179 (3) ◽  
pp. 485-500 ◽  
Author(s):  
Maria Filimonenko ◽  
Susanne Stuffers ◽  
Camilla Raiborg ◽  
Ai Yamamoto ◽  
Lene Malerød ◽  
...  

The endosomal sorting complexes required for transport (ESCRTs) are required to sort integral membrane proteins into intralumenal vesicles of the multivesicular body (MVB). Mutations in the ESCRT-III subunit CHMP2B were recently associated with frontotemporal dementia and amyotrophic lateral sclerosis (ALS), neurodegenerative diseases characterized by abnormal ubiquitin-positive protein deposits in affected neurons. We show here that autophagic degradation is inhibited in cells depleted of ESCRT subunits and in cells expressing CHMP2B mutants, leading to accumulation of protein aggregates containing ubiquitinated proteins, p62 and Alfy. Moreover, we find that functional MVBs are required for clearance of TDP-43 (identified as the major ubiquitinated protein in ALS and frontotemporal lobar degeneration with ubiquitin deposits), and of expanded polyglutamine aggregates associated with Huntington's disease. Together, our data indicate that efficient autophagic degradation requires functional MVBs and provide a possible explanation to the observed neurodegenerative phenotype seen in patients with CHMP2B mutations.


2007 ◽  
Vol 18 (2) ◽  
pp. 636-645 ◽  
Author(s):  
Matt Curtiss ◽  
Charles Jones ◽  
Markus Babst

The endosomal sorting complex required for transport (ESCRT)-I protein complex functions in recognition and sorting of ubiquitinated transmembrane proteins into multivesicular body (MVB) vesicles. It has been shown that ESCRT-I contains the vacuolar protein sorting (Vps) proteins Vps23, Vps28, and Vps37. We identified an additional subunit of yeast ESCRT-I called Mvb12, which seems to associate with ESCRT-I by binding to Vps37. Transient recruitment of ESCRT-I to MVBs results in the rapid degradation of Mvb12. In contrast to mutations in other ESCRT-I subunits, which result in strong defects in MVB cargo sorting, deletion of MVB12 resulted in only a partial sorting phenotype. This trafficking defect was fully suppressed by overexpression of the ESCRT-II complex. Mutations in MVB12 did not affect recruitment of ESCRT-I to MVBs, but they did result in delivery of ESCRT-I to the vacuolar lumen via the MVB pathway. Together, these observations suggest that Mvb12 may function in regulating the interactions of ESCRT-I with cargo and other proteins of the ESCRT machinery to efficiently coordinate cargo sorting and release of ESCRT-I from the MVB.


2009 ◽  
Vol 37 (1) ◽  
pp. 195-199 ◽  
Author(s):  
Jeremy G. Carlton ◽  
Juan Martin-Serrano

The ESCRT (endosomal sorting complex required for transport) machinery consists of a number of cytosolic proteins that make up three functional subcomplexes: ESCRT-I, ESCRT-II and ESCRT-III. These proteins function in multivesicular body formation and cell division and are co-opted by enveloped retroviruses to facilitate viral egress. Analysis of these functions may help illuminate conserved mechanisms of ESCRT function.


2009 ◽  
Vol 20 (5) ◽  
pp. 1374-1387 ◽  
Author(s):  
Monica Agromayor ◽  
Jez G. Carlton ◽  
John P. Phelan ◽  
Daniel R. Matthews ◽  
Leo M. Carlin ◽  
...  

The last steps of multivesicular body (MVB) formation, human immunodeficiency virus (HIV)-1 budding and cytokinesis require a functional endosomal sorting complex required for transport (ESCRT) machinery to facilitate topologically equivalent membrane fission events. Increased sodium tolerance (IST) 1, a new positive modulator of the ESCRT pathway, has been described recently, but an essential function of this highly conserved protein has not been identified. Here, we describe the previously uncharacterized KIAA0174 as the human homologue of IST1 (hIST1), and we report its conserved interaction with VPS4, CHMP1A/B, and LIP5. We also identify a microtubule interacting and transport (MIT) domain interacting motif (MIM) in hIST1 that is necessary for its interaction with VPS4, LIP5 and other MIT domain-containing proteins, namely, MITD1, AMSH, UBPY, and Spastin. Importantly, hIST1 is essential for cytokinesis in mammalian cells but not for HIV-1 budding, thus providing a novel mechanism of functional diversification of the ESCRT machinery. Last, we show that the hIST1 MIM activity is essential for cytokinesis, suggesting possible mechanisms to explain the role of hIST1 in the last step of mammalian cell division.


2012 ◽  
Vol 40 (2) ◽  
pp. 464-468 ◽  
Author(s):  
Emily R. Eden ◽  
Thomas Burgoyne ◽  
James R. Edgar ◽  
Alexander Sorkin ◽  
Clare E. Futter

Activated EGFR (epidermal growth factor receptor) undergoes ESCRT (endosomal sorting complex required for transport)-mediated sorting on to ILVs (intraluminal vesicles) of endosomes before degradation in the lysosome. Sorting of endocytosed EGFR on to ILVs removes the catalytic domain of the EGFR from the cytoplasm, resulting in termination of receptor signalling. EGFR signalling is also subject to down-regulation through receptor dephosphorylation by the ER (endoplasmic reticulum)-localized PTP1B (protein tyrosine phosphatase 1B). PTP1B on the cytoplasmic face of the ER interacts with endocytosed EGFR via direct membrane contacts sites between the ER and endosomes. In the present paper, we review the relationship between ER–endosome membrane contact sites and ILV formation, and their potential role in the regulation of EGFR sorting on to ILVs, through PTP1B-mediated dephosphorylation of both EGFR and components of the ESCRT machinery.


2021 ◽  
Author(s):  
Shweta V. Pipaliya ◽  
Rui Santos ◽  
Dayana Salas-Leiva ◽  
Erina A. Balmer ◽  
Corina D. Wirdnam ◽  
...  

ABSTRACTComparing a parasitic lineage to its free-living relatives is a powerful way to understand how the evolutionary transition to parasitism occurred. Giardia intestinalis (Fornicata) is a leading cause of gastrointestinal disease world-wide and is famous for its unusual complement of cellular compartments, such as having peripheral vacuoles instead of typical endosomal compartments. Endocytosis plays an important role in Giardia’s pathogenesis. Endosomal sorting complexes required for transport (ESCRT) are membrane-deforming proteins associated with the late endosome/multivesicular body (MVB). MVBs are ill-defined in G. intestinalis and roles for identified ESCRT-related proteins are not fully understood in the context of its unique endocytic system. Furthermore, components thought to be required for full ESCRT functionality have not yet been documented in this species.We used genomic and transcriptomic data from several Fornicata species to clarify the evolutionary genome streamlining observed in Giardia, as well as to detect any divergent orthologs of the Fornicata ESCRT subunits. We observed differences in the ESCRT machinery complement between Giardia strains. Microscopy-based investigations of key components of ESCRT machinery such as GiVPS36and GiVPS25 link them to peripheral vacuoles, highlighting these organelles as simplified MVB equivalents. Unexpectedly, we show ESCRT components associated with the Endoplasmic Reticulum, and for the first time, mitosomes. Finally, we identified the rare ESCRT component CHMP7 in several fornicate representatives, including Giardia, and show that contrary to current understanding, CHMP7 evolved from a gene fusion of VPS25 and SNF7 domains, prior to the last eukaryotic common ancestor, over 1.5 billion years ago. Our findings show that ESCRT machinery in G. intestinalis is far more varied and complete than previously thought, and associating to multiple cellular locations and presenting changes in ESCRT complement which pre-date adoption of a parasitic lifestyle.


Sign in / Sign up

Export Citation Format

Share Document