scholarly journals Farrerol Induces Cancer Cell Death via ERK Activation in SKOV3 Cells and Attenuates TNF-α-Mediated Lipolysis

2021 ◽  
Vol 22 (17) ◽  
pp. 9400
Author(s):  
Jongbeom Chae ◽  
Jin Soo Kim ◽  
seok tae Choi ◽  
Seul Gi Lee ◽  
Oyindamola Vivian Ojulari ◽  
...  

Farrerol (FA) is a flavanone isolated from the Chinese herbal medicine “Man-shan-hong” (Rhododendron dauricum L.). In the present study, FA decreased the viability of SKOV3 cells in a dose- and time-dependent manner, and it induced G2/M cell cycle arrest and cell apoptosis. Cell cycle distribution analysis via flow cytometry showed that FA decreased G1 populations and increased G2/M populations in SKOV3 cells. Additionally, Western blotting confirmed an increase in the expression level of proteins involved in the cell cycle, e.g., CDK and cyclins. FA-induced apoptosis in SKOV3 cells was also investigated using a TUNEL assay, and increased expression levels of proapoptotic factors, including Caspase-3 and poly ADP ribose polymerase (PARP), through the Extracellular signal-regulated kinase (ERK)/MAPK pathway were investigated. Proinflammatory cytokines (e.g., IL-6, TNF-α, and IL-1) have been identified as a driver of the pathological mechanisms underlying involuntary weight loss and impaired physical function, i.e., cachexia, during cancer; in the present study, we showed that farrerol attenuates TNF-α-induced lipolysis and increases adipogenic differentiation in 3T3-L1 cells. Thus, farrerol could potentially be used as an anticancer agent or anticachetic drug.

2021 ◽  
Author(s):  
Xin Guan ◽  
Yaxi Zhai ◽  
Rong Tang ◽  
Panpan Yang ◽  
Dongfang Li ◽  
...  

Abstract Background: Osteosarcoma is a common pediatric bone malignancy. Huaier, a traditional Chinese medicine, attracts increasing attention for its antitumor effect. The aim of this study is to investigate the inhibitory effect and molecular mechanisms of Huaier in osteosarcoma cells. Methods: Bioinformatics was performed to determine the biological processes and pathways connected to Huaier. The CCK-8 method and flow cytometry were used to detect the cell viability, cell cycle distribution and apoptosis of osteosarcoma cells (MG-63 and MNNG/HOS). Western blot was applied to assess the expression of proteins involved in apoptosis, cell cycle and the MAPK pathway. Results: Huaier could inhibit osteosarcoma cells proliferation by arresting cells in the G0/G1 phase. The extract also suppressed invasion and migration, while promoting the apoptosis of osteosarcoma cells in a time- and dose-dependent manner. Under Huaier stimulation, the expression of p-ERK/ERK, Cyclin D1 and Bcl-2 decreased, while the expression of p-JNK/JNK, p-P38/P38, P21, P27, Bax and Caspase3 increased in osteosarcoma cells. Conclusions: Our findings demonstrated for the first time that Huaier extract could inhibit proliferation and promote apoptosis in osteosarcoma cells via the MAPK pathway in vitro, suggesting that Huaier may be developed as a chemopreventive medicine for the treatment of osteosarcoma.


2020 ◽  
Vol 20 (6) ◽  
pp. 734-750
Author(s):  
Wallax A.S. Ferreira ◽  
Rommel R. Burbano ◽  
Claudia do Ó. Pessoa ◽  
Maria L. Harada ◽  
Bárbara do Nascimento Borges ◽  
...  

Background: Pisosterol, a triterpene derived from Pisolithus tinctorius, exhibits potential antitumor activity in various malignancies. However, the molecular mechanisms that mediate the pisosterol-specific effects on glioma cells remain unknown. Objective: This study aimed to evaluate the antitumoral effects of pisosterol on glioma cell lines. Methods: The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and trypan blue exclusion assays were used to evaluate the effect of pisosterol on cell proliferation and viability in glioma cells. The effect of pisosterol on the distribution of the cells in the cell cycle was performed by flow cytometry. The expression and methylation pattern of the promoter region of MYC, ATM, BCL2, BMI1, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, MDM2, p14ARF and TP53 was analyzed by RT-qPCR, western blotting and bisulfite sequencing PCR (BSP-PCR). Results: Here, it has been reported that pisosterol markedly induced G2/M arrest and apoptosis and decreased the cell viability and proliferation potential of glioma cells in a dose-dependent manner by increasing the expression of ATM, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, p14ARF and TP53 and decreasing the expression of MYC, BCL2, BMI1 and MDM2. Pisosterol also triggered both caspase-independent and caspase-dependent apoptotic pathways by regulating the expression of Bcl-2 and activating caspase-3 and p53. Conclusions: It has been, for the first time, confirmed that the ATM/ATR signaling pathway is a critical mechanism for G2/M arrest in pisosterol-induced glioma cell cycle arrest and suggests that this compound might be a promising anticancer candidate for further investigation.


2018 ◽  
Vol 18 (2) ◽  
pp. 210-215 ◽  
Author(s):  
Mona Diab-Assaf ◽  
Josiane Semaan ◽  
Marwan El-Sabban ◽  
Soad K. Al Jaouni ◽  
Rania Azar ◽  
...  

Introduction: Adult T-cell leukemia (ATL) is an aggressive form of malignancy caused by human T- cell lymphotropic virus 1 (HTLV-1). Currently, there is no effective treatment for ATL. Thymoquinone has been reported to have anti-cancer properties. Objective: The aim of this study is to investigatthe effects of TQ on proliferation, apoptosis induction and the underlying mechanism of action in both HTLV-1 positive (C91-PL and HuT-102) and HTLV-1 negative (CEM and Jurkat) malignant T-lymphocytes. Materials and Methods: Cells were incubated with different thymoquinone concentrations for 24h. Cell cytotoxicity was assayed using the CytoTox 96® Non-Radioactive Cytotoxicity Assay Kit. Cell proliferation was determined using CellTiter 96® Non-Radioactive Cell Proliferation. Cell cycle analysis was performed by staining with propidium iodide. Apoptosis was assessed using cell death ELISA kit. The effect of TQ on p53, p21, Bcl-2 protein expression was determined using Western blot analysis while TGF mRNA expression was determined by RT-PCR. Results: At non-cytotoxic concentrations of TQ, it resulted in the inhibition of proliferation in a dose dependent manner. Flow cytometric analysis revealed a shift in the cell cycle distribution to the PreG1 phase which is a marker of apoptosis. Also TQ increase DNA fragmentation. TQ mediated its anti-proliferative effect and apoptosis induction by an up-regulation of TGFβ1, p53 and p21 and a down-regulation of TGF-α and Bcl-2α. Conclusion: Thymoquinone presents antiproliferative and proapoptotic effects in ATL cells. For this reason, further research is required to investigate its possible application in the treatment of ATL.


2014 ◽  
Vol 24 (4) ◽  
pp. 629-634 ◽  
Author(s):  
Qiaoying Zhu ◽  
Jianming Hu ◽  
Huijuan Meng ◽  
Yufei Shen ◽  
Jinhua Zhou ◽  
...  

ObjectiveAplasia Ras homolog member I (ARHI) is associated with human ovarian cancer (HOC) growth and proliferation; however, the mechanisms are unclear. The purpose of this study was to investigateARHIeffects in HOC SKOV3 cells.MethodsWe transfected SKOV3 cells with PIRES2-EGFP-ARHI and measured growth inhibition rates, cell cycle distribution, apoptosis rates, and expression of P-STAT3 (phosphorylated signal transduction and activators of transcription 3) and P-ERK (phosphorylated extracellular signal regulated protein kinase).ResultsOur data showed significant inhibition of growth, significantly increased S-phase arrest and apoptosis rates, and reduction of P-STAT3 and P-ERK1/2 expression levels.ConclusionsWe propose the mechanism may involveARHI-induced phosphorylation of ERK1/2 and STAT3 protein kinases, thereby blocking proliferation signaling pathways, to induce HOC SKOV3 apoptosis.


1998 ◽  
Vol 275 (5) ◽  
pp. L942-L949 ◽  
Author(s):  
Beek Yoke Chin ◽  
Mary E. Choi ◽  
Marie D. Burdick ◽  
Robert M. Strieter ◽  
Terence H. Risby ◽  
...  

Particulate matter (PM) is a major by-product from the combustion of fossil fuels. The biological target of inhaled PM is the pulmonary epithelium and resident macrophages. In this study, we demonstrate that cultured macrophages (RAW 264.7 cells) exposed continously to a well-defined model of PM [benzo[ a]pyrene adsorbed on carbon black (CB+BaP)] exhibit a time-dependent expression and release of the cytokine tumor necrosis factor-α (TNF-α). CB+BaP also evoked programmed cell death or apoptosis in cultured macrophages as assessed by genomic DNA-laddering assays. The CB+BaP-induced apoptosis was inhibited when macrophages were treated with CB+BaP in the presence of a neutralizing antibody to TNF-α, suggesting that TNF-α plays an important role in mediating CB+BaP-induced apoptosis in macrophages. Interestingly, neither untreated carbon black nor benzo[ a]pyrene alone induced apoptosis or caused the release of TNF-α in RAW 264.7 cells. Moreover, we observed that TNF-α activates mitogen-activated protein kinase (MAPK) activity, the extracellular signal-regulated kinases p42/p44, in a time-dependent manner. RAW 264.7 cells treated with PD-098059, a selective inhibitor of MAPK kinase activity, did not exhibit CB+BaP-induced apoptosis and TNF-α secretion. Furthermore, cells treated with the MAPK kinase inhibitor did not undergo TNF-α-induced apoptosis. Taken together, our data suggest that TNF-α mediates PM-induced apoptosis and that the MAPK pathway may play an important role in regulating this pathway.


2015 ◽  
Vol 93 (6) ◽  
pp. 604-610 ◽  
Author(s):  
Fatemeh Bagheri ◽  
Shahrokh Safarian ◽  
Mohamadreza Baghaban Eslaminejad ◽  
Nader Sheibani

There are a number of reports demonstrating a relationship between the alterations in DFF40 expression and development of some cancers. Here, increased DFF40 expression in T-47D cells in the presence of doxorubicin was envisaged for therapeutic usage. The T-47D cells were transfected with an eukaryotic expression vector encoding the DFF40 cDNA. Following incubation with doxorubicin, propidium iodide (PI) staining was used for cell cycle distribution analysis. The rates of apoptosis were determined by annexin V/PI staining. Apoptosis was also evaluated using the DNA laddering analysis. The viability of DFF40-transfected cells incubated with doxorubicin was significantly decreased compared with control cells. However, there were no substantial changes in the cell cycle distribution of pIRES2-DFF40 cells incubated with doxorubicin compared to control cells. The expression of DFF40, without doxorubicin incubation, had also no significant effect on the cell cycle distribution. There was no DNA laddering in cells transfected with the empty pIRES2 vector when incubated with doxorubicin. In contrast, DNA laddering was observed in DFF40 transfected cells in the presence of doxorubicin after 48 h. Also, the expression of DFF40 and DFF45 was increased in DFF40 transfected cells in the presence of doxorubicin enhancing cell death. Collectively our results indicated that co-treatment of DFF40-transfected cells with doxorubicin can enhance the killing of these tumor cells via apoptosis. Thus, modulation of DFF40 level may be a beneficial strategy for treatment of chemo-resistant cancers.


2017 ◽  
Vol 43 (2) ◽  
pp. 197-204
Author(s):  
Saime Batirel ◽  
Ergul Mutlu Altundag ◽  
Selina Toplayici ◽  
Ceyda Corek ◽  
Hasan Fevzi Batirel

Abstract Background: Resveratrol is a natural anti-carcinogenic polyphenol. Malignant pleural mesothelioma (MPM) is an aggressive tumor with poor prognosis. In this study, we investigated the effects of resveratrol on epithelioid MPM. Material and methods: Human epithelioid MPM cell line (NCI-H2452) was exposed to resveratrol (5–200 μM) for 24 or 48 h. Cell viability was assessed by WST-1 assay. Flow cytometry analyses were performed to evaluate the effects of resveratrol on cell cycle distribution and apoptosis. Western blot analysis was used to determine protein expression levels of antioxidant enzymes, cyclin D1 and p53. Reactive oxygen species (ROS) were measured using H2DCFDA. Results: Resveratrol reduced cell viability of the cells in a concentration and time dependent manner. After treatment, the cells accumulated in G0/G1 phase and the percentage of cells in G2/M phase was reduced. Resveratrol decreased cyclin D1 and increased p53 expression in cell lysates. Treated cells exhibited increased apoptotic activity. ROS were elevated with resveratrol treatment, but there was no change in the expression of superoxide dismutase (SOD)-1, SOD-2 and glutathione peroxidase. Conclusion: Our results revealed that resveratrol exhibits anti-cell viability effect on epithelioid MPM cells by inducing cell cycle arrest and apoptosis. Resveratrol may become a potential therapeutic agent for epithelioid MPM.


1998 ◽  
Vol 72 (12) ◽  
pp. 9637-9644 ◽  
Author(s):  
Alan K. Howe ◽  
Stéphanie Gaillard ◽  
John S. Bennett ◽  
Kathleen Rundell

ABSTRACT The simian virus 40 small t antigen (small-t) is required for optimal viral replication and transformation, especially during the infection of nondividing cells, suggesting that the function of small-t is to promote cell cycle progression. The mechanism through which small-t promotes cell growth reflects, in part, its binding and inhibition of protein phosphatase 2A (PP2A). The use of recombinant adenoviruses allows small-t expression in a majority of cells in a population, thus providing a convenient source of cells for biochemical analyses. In monkey kidney CV1 cells, small-t expressed from these adenovirus vectors activated the mitogen-activated protein kinase (MAPK) pathway, induced JNK activity, and increased AP-1 DNA-binding activity, all in a PP2A-dependent manner. Expression of small-t also caused an increase in the phosphorylation of the Na+/H+ antiporter, a mitogen-activated ion exchanger whose activity correlates with its phosphorylation. At least part of the antiporter phosphorylation induced by small-t reflected activation of the MAPK pathway, as suggested by results of assays using a chemical inhibitor of the MAPK-activating kinase, MEK. Finally, small-t expression from adenovirus vectors promoted efficient cell cycle progression by growth-arrested cells. These vectors should facilitate further analysis of effects of small-t on cell cycle mediators.


2018 ◽  
Vol 70 (4) ◽  
pp. 665-673 ◽  
Author(s):  
Marina Jovanovic ◽  
Tatjana Srdic-Rajic ◽  
Emilija Svircev ◽  
Nebojsa Jasnic ◽  
Biljana Nikolic ◽  
...  

Polygonum maritimum is a traditional herbal remedy that produces abundant flavonoid secondary metabolites. The ethanol extract of P. maritimum aerial parts (POM) was chemically characterized and tested for antimicrobial properties and cytotoxicity. Results of LC-MS/MS analysis showed high contents of gallic acid, epigallocatechin gallate and catechin, and significant amounts of quercetin-3-O-galactoside and quercetin-3-O-glucoside. Evaluation of the antifungal properties revealed that POM induced notable growth inhibition of Alternaria alternata (34.3%), Penicillium spp. (30.6%), Fusarium semitectum (20.2%) and Aspergillus spp. (19.6%). Evaluation of cytotoxicity against human hepatoma HepG2 cells included monitoring the effects of both POM alone and its combination with cytostatic doxorubicin (Dox). Cell viability, apoptosis and cell cycle distribution and the expression of antioxidant enzymes (superoxide-dismutases SOD1 and SOD2 and catalase) were determined. A dose-dependent decrease in cell viability was detected, but a remarkably stronger effect was obtained when POM and Dox were applied in combination as compared to individual treatments. IC50 values were determined to be 393 ?g/mL (POM) and 2.24 ?g/mL (Dox) in combination, but 1153 ?g/mL (POM) and 12.56 ?g/mL (Dox) in a single treatment. The value of the Loewe index, determined for IC50, was notably lower than 1 (LI=0.51), clearly indicating synergism of POM and Dox. Additionally, POM and POM +Dox induced early/late apoptosis and G2/M cell cycle arrest. Furthermore, POM increased, while Dox decreased the expression levels of SODs and catalase. The obtained results encourage further examination of the potential use of POM in modern phytotherapy.


2020 ◽  
Author(s):  
Tao Li ◽  
Yingxing Xu ◽  
Yingzhen Wang ◽  
Yaping Jiang

Abstract Background: Abnormalities in apoptosis, cell cycle, proliferation, and differentiation of human bone marrow mesenchymal stem cells (hBMSCs) significantly impact bone metabolism and remodeling, and resulting in various skeletal disorders. Long-term exposure to a high dosage of dexamethasone (Dex) induces apoptosis and inhibits the proliferation of mesenchymal stromal cells (MSCs), which are probable primary causes of various skeletal disorders. However, to date, the exact mechanisms of action of Dex on hBMSCs has not been fully elucidated. Methods: To explore the effects of Dex on apoptosis, cell cycle, proliferation, senescence, osteogenic and adipogenic differentiation of hBMSCs at the various exposure times and concentrations, Hoechst 33342/PI staining, flow cytometry, crystal violet assay, β-galactosidase (β-GAL) activity assay, alizarin red S (ARS) staining assay, and Oil Red O (ORO) staining assay were performed. A microarray assay was used to identify differentially expressed lncRNAs and mRNAs in 10-6 mol/L Dex-treated hBMSCs, and a bioinformatics analysis was conducted to further explore the role of these differentially expressed lncRNAs and mRNAs in the coding and noncoding (CNC) network. Furthermore, the microarray results were validated using quantitative real-time PCR (qRT-PCR) analysis. Results: Over the range of 10-8, 10-7, and 10-6 mol/L, Dex induced apoptosis, arrest of the cell cycle, inhibition of osteogenic differentiation and promotion adipogenic differentiation of the hBMSCs in a dose-dependent manner. In addition, 10-6 mol/L Dex significantly induced apoptosis, suppressed proliferation and increased the senescence of hBMSCs in a time-dependent manner. Interestingly, this time-dependent effect of Dex on the apoptosis of hBMSCs plateaued at the 7th day and decreased from the 8th day to 10th day, while Dex treatment increased senescence of the hBMSCs on the 6th day. Furthermore, the microarray analysis identified a total of 137 differentially expressed mRNAs (90 upregulated and 47 downregulated) and 90 differentially expressed lncRNAs (61 upregulated and 29 downregulated) in hBMSCs after exposure to 10-6 mol/L Dex. The differentially expressed mRNAs and lncRNAs were associated with the regulation of cell apoptosis, proliferation and cell cycle. Meanwhile, several signaling pathways involved in these proceses, including the mTOR signaling pathway, Ras signaling pathway, HIF-1 signaling pathway, NF-kappa B signaling pathway, and TGF-beta signaling pathway, also were identified through the interaction net in the significant pathways (Path-Net) analysis. Furthermore, the CNC network further identified 78 core regulatory genes involved in the regulation of apoptosis. Additionally, qRT-PCR was used to confirm the identity of the key differentially expressed mRNAs and lncRNAs found to be closely associated with cell apoptosis to confirm the reliability of the microarray dataset. Conclusions: In summary, the effect of Dex on apoptosis, cell cycle, proliferation, osteogenic differentiation and adipogenic differentiation of the hBMSCs depended on exposure time and concentration. Continuous exposure to 10-6 mol/L of Dex for 7 days may be a suitable protocol for inducing the apoptosis of hBMSCs. Under this protocol, differentially expressed lncRNAs and mRNAs associated with apoptosis, cell cycle and proliferation were identified, providing a new research direction for the further studies.


Sign in / Sign up

Export Citation Format

Share Document