scholarly journals Catalytic Asymmetry in Homodimeric H+-Pumping Membrane Pyrophosphatase Demonstrated by Non-Hydrolyzable Pyrophosphate Analogs

2021 ◽  
Vol 22 (18) ◽  
pp. 9820
Author(s):  
Viktor A. Anashkin ◽  
Anssi M. Malinen ◽  
Alexander V. Bogachev ◽  
Alexander A. Baykov

Membrane-bound inorganic pyrophosphatase (mPPase) resembles the F-ATPase in catalyzing polyphosphate-energized H+ and Na+ transport across lipid membranes, but differs structurally and mechanistically. Homodimeric mPPase likely uses a “direct coupling” mechanism, in which the proton generated from the water nucleophile at the entrance to the ion conductance channel is transported across the membrane or triggers Na+ transport. The structural aspects of this mechanism, including subunit cooperation, are still poorly understood. Using a refined enzyme assay, we examined the inhibition of K+-dependent H+-transporting mPPase from Desulfitobacterium hafniensee by three non-hydrolyzable PPi analogs (imidodiphosphate and C-substituted bisphosphonates). The kinetic data demonstrated negative cooperativity in inhibitor binding to two active sites, and reduced active site performance when the inhibitor or substrate occupied the other active site. The nonequivalence of active sites in PPi hydrolysis in terms of the Michaelis constant vanished at a low (0.1 mM) concentration of Mg2+ (essential cofactor). The replacement of K+, the second metal cofactor, by Na+ increased the substrate and inhibitor binding cooperativity. The detergent-solubilized form of mPPase exhibited similar active site nonequivalence in PPi hydrolysis. Our findings support the notion that the mPPase mechanism combines Mitchell’s direct coupling with conformational coupling to catalyze cation transport across the membrane.

1979 ◽  
Author(s):  
R.A. Henriksen ◽  
W.G. Owen ◽  
M.E. Nesheim ◽  
K.G. Mann

Thrombin Quick (TQ) may be isolated following treatment of Prothrombin Quick [Owen, et al, Mayo Clinic Proceedings, 53: 29-33, (1978)] with Taipan venom, phospholipid and Ca2+. The clotting activity of TQ with fibrinogen is 1/200 that of normal thrombin (T) The activation of Factors V and VIII, and the aggregation of platelets by TQ occurs with an effectiveness of about 1/50 that of thrombin. When incubated with antithrombin III, both T and TQ form inhibitor complexes as determined by dodecylsulfate gel electropheresis. Titration of T and TQ with the fluorescent inhibitor dansylarginine-4-ethylpiperidine amide indicates an equivalent number of active sites based on protein absorption at 280 nm. However, the two enzymes may be distinguished by the decreased fluorescence enhancement observed with TQ relative to T, indicating an increased polarity in the inhibitor binding site of TQ. With the substrate benzoylarginine ethylester, TQ has a Km = 4.5 x 10-5M and kcat - 6.93 compared to Km = 4.0 × 10-5M and kcat = 17.7 for T. This indicates that the defect in TQ esterase activity is in the catalytic mechanism itself and not in substrate binding. The rate of inhibition of TQ by diisopropylphosphofluoridate is decreased. Decreased acylation and deacylation rates for TQ relative to T are observed for tydrolysis of the active site titrant 4-methyumbel1 i feryl-p-guanidlnobenzoate.


1979 ◽  
Author(s):  
R Henriksen ◽  
W Owen ◽  
M Nesheim ◽  
K Mann

Thrombin Quick (TQ) may be isolated following treatment of Prothrombin Quick [Owen, et al, Mayo Clinic Proceedings, 53: 29-33, (1978)] with Taipan venom, phospholipid and ca2+. The clotting activity of TQ with fibrinogen is 1/200 that of nornar thrombin (T). The activation of Factors V and VIII, and the aggregation of platelets by TQ occurs with an effectiveness of about 1/50 that of thrombin. when incubated with antithrombin III, both T ad TQ fom inhibitor complexes as determined by dodecylsulfate gel electropheresis. Titration of T and TQ with the fluorescent inhibitor dansylarginine-4-ethylpiperidine amide indicates an equivalent number of active sites based on protein absorption at 280 nm. However, the two enzymes may be distinquished by the decreased fluorescence enhancement observed with TQ relative to T, indicating an increased polarity in the inhibitor binding site of TQ. With the substrate benzoylarginine ethylester, TQ has a Km = 4.5 × 10-5M and kcat= 6.93 compared to Km = 4.0 × 10-5M and kcat= 17.7 for T. This indicates that the defect in TQ esterase activity is in the catalytic mechanism itself and not in substrate binding. The rate of inhibition of TQ by diisopropylphosphofluoridate is decreased. Decreased acylation and deacylation rates for TQ relative to T are observed for hydrolysis of the active site titrant 4-methykl-umbelliferyl-p-guanidinobenzoate


2018 ◽  
Vol 115 (43) ◽  
pp. E10032-E10040 ◽  
Author(s):  
Alexei Gorelik ◽  
Ahmad Gebai ◽  
Katalin Illes ◽  
Daniele Piomelli ◽  
Bhushan Nagar

Palmitoylethanolamide is a bioactive lipid that strongly alleviates pain and inflammation in animal models and in humans. Its signaling activity is terminated through degradation by N-acylethanolamine acid amidase (NAAA), a cysteine hydrolase expressed at high levels in immune cells. Pharmacological inhibitors of NAAA activity exert profound analgesic and antiinflammatory effects in rodent models, pointing to this protein as a potential target for therapeutic drug discovery. To facilitate these efforts and to better understand the molecular mechanism of action of NAAA, we determined crystal structures of this enzyme in various activation states and in complex with several ligands, including both a covalent and a reversible inhibitor. Self-proteolysis exposes the otherwise buried active site of NAAA to allow catalysis. Formation of a stable substrate- or inhibitor-binding site appears to be conformationally coupled to the interaction of a pair of hydrophobic helices in the enzyme with lipid membranes, resulting in the creation of a linear hydrophobic cavity near the active site that accommodates the ligand’s acyl chain.


2019 ◽  
Author(s):  
M. Alexander Ardagh ◽  
Manish Shetty ◽  
Anatoliy Kuznetsov ◽  
Qi Zhang ◽  
Phillip Christopher ◽  
...  

Catalytic enhancement of chemical reactions via heterogeneous materials occurs through stabilization of transition states at designed active sites, but dramatically greater rate acceleration on that same active site is achieved when the surface intermediates oscillate in binding energy. The applied oscillation amplitude and frequency can accelerate reactions orders of magnitude above the catalytic rates of static systems, provided the active site dynamics are tuned to the natural frequencies of the surface chemistry. In this work, differences in the characteristics of parallel reactions are exploited via selective application of active site dynamics (0 < ΔU < 1.0 eV amplitude, 10<sup>-6</sup> < f < 10<sup>4</sup> Hz frequency) to control the extent of competing reactions occurring on the shared catalytic surface. Simulation of multiple parallel reaction systems with broad range of variation in chemical parameters revealed that parallel chemistries are highly tunable in selectivity between either pure product, even when specific products are not selectively produced under static conditions. Two mechanisms leading to dynamic selectivity control were identified: (i) surface thermodynamic control of one product species under strong binding conditions, or (ii) catalytic resonance of the kinetics of one reaction over the other. These dynamic parallel pathway control strategies applied to a host of chemical conditions indicate significant potential for improving the catalytic performance of many important industrial chemical reactions beyond their existing static performance.


2021 ◽  
Author(s):  
Zhi-yong Yang ◽  
Emilio Jimenez-Vicente ◽  
Hayden Kallas ◽  
Dmitriy A Lukoyanov ◽  
Hao Yang ◽  
...  

The electronic structure of the active-site metal cofactor (FeV-cofactor) of resting-state V-dependent nitrogenase has been an open question, with earlier studies indicating that it exhibits a broad S = 3/2...


Author(s):  
E.G. Shidlovskaya ◽  
L. Schimansky-Geier ◽  
Yu.M. Romanovsky

A two dimensional model for the substrate inside a pocket of an active site of an enzyme is presented and investigated as a vibrational system. The parameters of the system are evaluated for α-chymotrypsin. In the case of internal resonance it is analytically and numerically shown that the energy concentrated on a certain degree of freedom might be several times larger than in the non-resonant case. Additionally, the system is driven by harmonic excitations and again energy due to nonlinear phenomena is redistributed inhomogeneously. These results may be of importance for the determination of the rates of catalytic events of substrates bound in pockets of active sites.


1975 ◽  
Vol 53 (7) ◽  
pp. 747-757 ◽  
Author(s):  
Graham J. Moore ◽  
N. Leo Benoiton

The initial rates of hydrolysis of Bz-Gly-Lys and Bz-Gly-Phe by carboxypeptidase B (CPB) are increased in the presence of the modifiers β-phenylpropionic acid, cyclohexanol, Bz-Gly, and Bz-Gly-Gly. The hydrolysis of the tripeptide Bz-Gly-Gly-Phe is also activated by Bz-Gly and Bz-Gly-Gly, but none of these modifiers activate the hydrolysis of Bz-Gly-Gly-Lys, Z-Leu-Ala-Phe, or Bz-Gly-phenyllactic acid by CPB. All modifiers except cyclohexanol display inhibitory modes of binding when present in high concentration.Examination of Lineweaver–Burk plots in the presence of fixed concentrations of Bz-Gly has shown that activation of the hydrolysis of neutral and basic peptides by CPB, as reflected in the values of the extrapolated parameters, Km(app) and keat, occurs by different mechanisms. For Bz-Gly-Gly-Phe, activation occurs because the enzyme–modifier complex has a higher affinity than the free enzyme for the substrate, whereas activation of the hydrolysis of Bz-Gly-Lys derives from an increase in the rate of breakdown of the enzyme–substrate complex to give products.Cyclohexanol differs from Bz-Gly and Bz-Gly-Gly in that it displays no inhibitory mode of binding with any of the substrates examined, activates only the hydrolysis of dipeptides by CPB, and has a greater effect on the hydrolysis of the basic dipeptide than on the neutral dipeptide. Moreover, when Bz-Gly-Lys is the substrate, cyclohexanol activates its hydrolysis by CPB by increasing both the enzyme–substrate binding affinity and the rate of the catalytic step, an effect different from that observed when Bz-Gly is the modifier.The anomalous kinetic behavior of CPB is remarkably similar to that of carboxypeptidase A, and is a good indication that both enzymes have very similar structures in and around their respective active sites. A binding site for activator molecules down the cleft of the active site is proposed for CPB to explain the observed kinetic behavior.


1992 ◽  
Vol 285 (3) ◽  
pp. 957-964 ◽  
Author(s):  
T G Warner ◽  
R Harris ◽  
R McDowell ◽  
E R Vimr

The sialidase from Salmonella typhimurium LT2 was characterized by using photoaffinity-labelling techniques. The well-known sialidase inhibitor 5-acetamido-2,6-anhydro-3,5-dideoxy-D-glycero-D-galacto-non- 2-enonic acid (Neu5Ac2en) was modified to contain an amino group at C-9, which permitted the incorporation of 4-azidosalicylic acid in amide linkage at this position. Labelling of the purified protein with the radioactive (125I) photoprobe was determined to be highly specific for a region within the active-site cavity. This conclusion was based on the observation that the competitive inhibitor Neu5Ac2en in the photolysis mixture prevented labelling of the protein. In contrast, compounds with structural and chemical features similar to the probe and Neu5Ac2en, but which were not competitive enzyme inhibitors, did not affect the photolabelling of the protein. The peptide interacting with the probe was identified by CNBr treatment of the labelled protein, followed by N-terminal sequence analysis. Inspection of the primary structure of the protein, predicted from the cloned structural gene for the sialidase [Hoyer, Hamilton, Steenbergen & Vimr (1992) Mol. Microbiol. 6, 873-884] revealed that the label was incorporated into a 9.6 kDa fragment situated within the terminal third of the molecule near the C-terminal end. Secondary-structural predictions using the Garnier-Robson algorithm [Garnier, Osguthorpe & Robson (1978) J. Mol. Biol. 120, 97-120] of the labelled peptide revealed a structural similarity to the active site of influenza-A- and Sendai-HN-virus sialidases with a repetitive series of alternating beta-sheets connected with loops.


2018 ◽  
Vol 19 (12) ◽  
pp. 3858
Author(s):  
Milan Hodošček ◽  
Nadia Elghobashi-Meinhardt

A combination of molecular dynamics (MD) simulations and computational analyses uncovers structural features that may influence substrate passage and exposure to the active sites within the proteolytic chamber of the 20S proteasome core particle (CP). MD simulations of the CP reveal relaxation dynamics in which the CP slowly contracts over the 54 ns sampling period. MD simulations of the SyringolinA (SylA) inhibitor within the proteolytic B 1 ring chamber of the CP indicate that favorable van der Waals and electrostatic interactions account for the predominant association of the inhibitor with the walls of the proteolytic chamber. The time scale required for the inhibitor to travel from the center of the proteolytic chamber to the chamber wall is on the order of 4 ns, accompanied by an average energetic stabilization of approximately −20 kcal/mol.


1970 ◽  
Vol 46 (4) ◽  
pp. 487-494
Author(s):  
ATM Kamrul Hasan

Multiplicity of active-site in heterogeneous Ziegler-Natta catalysts and its correlation with polymer microstructure was studied through the surface structure analysis of catalyst by computer simulation of X-ray Photoelectron Spectroscopy (XPS) data and microstructure investigation of polypropylene chains based on the deconvolution of the molecular weight distribution curves by multiple Flory most probable distributions using Gel Permeation Chromatography (GPC) method. The number and relative intensities of these peaks were found correlated to the distribution of multiple active sites. In this investigation, four individual categories of active sites were identified, each of which yields polypropylene with unique properties of molecular weight and chain structure different from other active sites. The reason of the multiplicity of active sites was determined by the presence of different locations of surface titanium species coordinated with other surface atoms or molecules. These different surface complexes of active species determine the multiple active site nature of catalyst which replicates the microtacticity, molecular weight and chain microstructure distribution of polymer. Keywords: Ziegler-Natta catalyst; Multiple active sites; Flory components; Computer simulation; Deconvolution; MWD. DOI: http://dx.doi.org/10.3329/bjsir.v46i4.9596 BJSIR 2011; 46(4): 487-494


Sign in / Sign up

Export Citation Format

Share Document