proteolytic chamber
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Erik Jonsson ◽  
Zaw Min Htet ◽  
Jared A.M. Bard ◽  
Ken C Dong ◽  
Andreas Martin

The 26S proteasome is the major ATP-dependent protease in eukaryotic cells, where it catalyzes the degradation of thousands of proteins for general homeostasis and the control of vital processes. It specifically recognizes appropriate substrates through attached ubiquitin chains and uses its ATPase motor for mechanical unfolding and translocation into a proteolytic chamber. Here, we used single-molecule Foerster Resonance Energy Transfer (FRET) measurements to provide unprecedented insights into the mechanisms of selective substrate engagement, ATP-dependent degradation, and the regulation of these processes by ubiquitin chains. Our assays revealed the proteasome conformational dynamics and allowed monitoring individual substrates as they progress through the central channel during degradation. We found that rapid transitions between engagement- and processing-competent conformations of the proteasome control substrate access to the ATPase motor. Ubiquitin-chain binding functions as an allosteric regulator to slow these transitions, stabilize the engagement-competent state, and facilitate degradation initiation. The global conformational transitions cease upon substrate engagement, and except for apparent motor slips when encountering stably folded domains, the proteasome remains in processing-competent states for substrate translocation and unfolding, which is further accelerated by ubiquitin chains. Our studies revealed the dependence of ATP-dependent substrate degradation on the conformational dynamics of the proteasome and its allosteric regulation by ubiquitin chains, which ensure substrate selectivity and prioritization in a crowded cellular environment.


Author(s):  
Kaiming Zhang ◽  
Shanshan Li ◽  
Kan-Yen Hsieh ◽  
Shih-Chieh Su ◽  
Grigore D. Pintilie ◽  
...  

AbstractThe Lon AAA+ (adenosine triphosphatases associated with diverse cellular activities) protease (LonA) converts ATP-fuelled conformational changes into sufficient mechanical force to drive translocation of the substrate into a hexameric proteolytic chamber. To understand the structural basis for the substrate translocation process, we have determined the cryo-electron microscopy (cryo-EM) structure of Meiothermus taiwanensis LonA (MtaLonA) at 3.6 Å resolution in a substrate-engaged state. Substrate interactions are mediated by the dual pore-loops of the ATPase domains, organized in spiral staircase arrangement from four consecutive protomers in different ATP-binding and hydrolysis states; a closed AAA+ ring is nevertheless maintained by two disengaged ADP-bound protomers transiting between the lowest and highest position. The structure reveals a processive rotary translocation mechanism mediated by LonA-specific nucleotide-dependent allosteric coordination among the ATPase domains, which is induced by substrate binding.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Zev A Ripstein ◽  
Siavash Vahidi ◽  
Walid A Houry ◽  
John L Rubinstein ◽  
Lewis E Kay

The ClpXP degradation machine consists of a hexameric AAA+ unfoldase (ClpX) and a pair of heptameric serine protease rings (ClpP) that unfold, translocate, and subsequently degrade client proteins. ClpXP is an important target for drug development against infectious diseases. Although structures are available for isolated ClpX and ClpP rings, it remains unknown how symmetry mismatched ClpX and ClpP work in tandem for processive substrate translocation into the ClpP proteolytic chamber. Here, we present cryo-EM structures of the substrate-bound ClpXP complex from Neisseria meningitidis at 2.3 to 3.3 Å resolution. The structures allow development of a model in which the sequential hydrolysis of ATP is coupled to motions of ClpX loops that lead to directional substrate translocation and ClpX rotation relative to ClpP. Our data add to the growing body of evidence that AAA+ molecular machines generate translocating forces by a common mechanism.


2019 ◽  
Author(s):  
Kyle E. Lopez ◽  
Alexandrea N. Rizo ◽  
Eric Tse ◽  
JiaBei Lin ◽  
Nathaniel W. Scull ◽  
...  

AbstractThe ClpAP complex functions as a “bacterial proteasome” that simultaneously unfolds and degrades proteins targeted for destruction. ClpA utilizes two AAA+ domains per protomer to power substrate unfolding and translocation into the ClpP proteolytic chamber. To understand this mechanism, we determined high-resolution structures of wildtype E. coli ClpAP in distinct substrate-bound states. ClpA forms a spiral with substrate contacts across both AAA+ domains, while protomers at the seam undergo nucleotide-specific rearrangements indicating a conserved rotary mechanism. ClpA IGL loops extend flexibly to bind the planar, heptameric ClpP surface and support a large ClpA-P rotation that re-orients the translocation channel. The symmetry mismatch is maintained at the spiral seam through bind and release states of the IGL loops, which appear precisely coupled to substrate translocation. Thus, ClpA rotates around the apical surface of ClpP to processively translocate substrate into the protease.


2019 ◽  
Author(s):  
Zev A. Ripstein ◽  
Siavash Vahidi ◽  
Walid A. Houry ◽  
John L. Rubinstein ◽  
Lewis E. Kay

AbstractThe ClpXP degradation machine consists of a hexameric AAA+ unfoldase (ClpX) and a pair of heptameric serine protease rings (ClpP) that unfold, translocate, and subsequently degrade client proteins. ClpXP is an important target for drug development against infectious diseases. Although structures are available for isolated ClpX and ClpP rings, it remains unknown how symmetry mismatched ClpX and ClpP work in tandem for processive substrate translocation into the ClpP proteolytic chamber. Here we present cryo-EM structures of the substrate-bound ClpXP complex from Neisseria meningitidis at 2.3 to 3.3 Å resolution. The structures allow development of a model in which the cyclical hydrolysis of ATP is coupled to concerted motions of ClpX loops that lead to directional substrate translocation and ClpX rotation relative to ClpP. Our data add to the growing body of evidence that AAA+ molecular machines generate translocating forces by a common mechanism.


2018 ◽  
Vol 19 (12) ◽  
pp. 3858
Author(s):  
Milan Hodošček ◽  
Nadia Elghobashi-Meinhardt

A combination of molecular dynamics (MD) simulations and computational analyses uncovers structural features that may influence substrate passage and exposure to the active sites within the proteolytic chamber of the 20S proteasome core particle (CP). MD simulations of the CP reveal relaxation dynamics in which the CP slowly contracts over the 54 ns sampling period. MD simulations of the SyringolinA (SylA) inhibitor within the proteolytic B 1 ring chamber of the CP indicate that favorable van der Waals and electrostatic interactions account for the predominant association of the inhibitor with the walls of the proteolytic chamber. The time scale required for the inhibitor to travel from the center of the proteolytic chamber to the chamber wall is on the order of 4 ns, accompanied by an average energetic stabilization of approximately −20 kcal/mol.


2017 ◽  
Author(s):  
Cristina Puchades ◽  
Anthony J. Rampello ◽  
Mia Shin ◽  
Christopher J. Giuliano ◽  
R. Luke Wiseman ◽  
...  

AbstractWe present the first atomic model of a substrate-bound inner mitochondrial membrane AAA+ quality control protease, YME1. Our ~3.4 Å cryo-EM structure reveals how the ATPases form a closed spiral staircase encircling an unfolded substrate, directing it toward the flat, symmetric protease ring. Importantly, the structure reveals how three coexisting nucleotide states allosterically induce distinct positioning of tyrosines in the central channel, resulting in substrate engagement and translocation to the negatively charged proteolytic chamber. This tight coordination by a network of conserved residues defines a sequential, around-the-ring ATP hydrolysis cycle that results in step-wise substrate translocation. Furthermore, we identify a hinge-like linker that accommodates the large-scale nucleotide-driven motions of the ATPase spiral independently of the contiguous planar proteolytic base. These results define the first molecular mechanism for a mitochondrial inner membrane AAA+ protease and reveal a translocation mechanism likely conserved for other AAA+ ATPases.


2017 ◽  
Vol 398 (5-6) ◽  
pp. 625-635 ◽  
Author(s):  
Lisa-Marie Bittner ◽  
Jan Arends ◽  
Franz Narberhaus

AbstractCellular proteomes are dynamic and adjusted to permanently changing conditions by ATP-fueled proteolytic machineries. Among the five AAA+proteases inEscherichia coliFtsH is the only essential and membrane-anchored metalloprotease. FtsH is a homohexamer that uses its ATPase domain to unfold and translocate substrates that are subsequently degraded without the need of ATP in the proteolytic chamber of the protease domain. FtsH eliminates misfolded proteins in the context of general quality control and properly folded proteins for regulatory reasons. Recent trapping approaches have revealed a number of novel FtsH substrates. This review summarizes the substrate diversity of FtsH and presents details on the surprisingly diverse recognition principles of three well-characterized substrates: LpxC, the key enzyme of lipopolysaccharide biosynthesis; RpoH, the alternative heat-shock sigma factor and YfgM, a bifunctional membrane protein implicated in periplasmic chaperone functions and cytoplasmic stress adaptation.


2017 ◽  
Author(s):  
Yanan Zhu ◽  
Wei Li Wang ◽  
Daqi Yu ◽  
Qi Ouyang ◽  
Ying Lu ◽  
...  

SUMMARYThe proteasome is a sophisticated ATP-dependent molecular machine responsible for protein degradation in all eukaryotic cells. It remains elusive how conformational changes of the AAA-ATPase unfoldase in the regulatory particle (RP) control the gating of substrate-translocation channel to the proteolytic chamber of the core particle (CP). Here we report three alternative states of the ATP-γS-bound human proteasome, in which the CP gate is asymmetrically open, visualized by cryo-EM at near-atomic resolutions. Only four nucleotides are stably bound to the AAA-ATPase ring in the open-gate states. Concerted nucleotide exchange gives rise to a back-and-forth wobbling motion of the AAA-ATPase channel, coincident with remarkable transitions of their pore loops between the spiral staircase and saddle-shaped circle topologies. Gate opening in the CP is thus controlled with nucleotide-driven remodeling of the AAA-ATPase unfoldase. These findings demonstrate an elegant mechanism of allosteric coordination among sub-machines within the holoenzyme that is crucial for substrate translocation.


Microbiology ◽  
2011 ◽  
Vol 157 (8) ◽  
pp. 2226-2234 ◽  
Author(s):  
Myriam Gominet ◽  
Nicolas Seghezzi ◽  
Philippe Mazodier

ADEP, a molecule of the acyl depsipeptide family, has an antibiotic activity with a unique mode of action. ADEP binding to the ubiquitous protease ClpP alters the structure of the enzyme. Access of protein to the ClpP proteolytic chamber is therefore facilitated and its cohort regulatory ATPases (ClpA, ClpC, ClpX) are not required. The consequent uncontrolled protein degradation in the cell appears to kill the ADEP-treated bacteria. ADEP is produced by Streptomyces hawaiiensis. Most sequenced genomes of Streptomyces have five clpP genes, organized as two distinct bicistronic operons, clpP1clpP2 and clpP3clpP4, and a single clpP5 gene. We investigated whether the different Clp proteases are all sensitive to ADEP. We report that ClpP1 is a target of ADEP whereas ClpP3 is largely insensitive. In wild-type Streptomyces lividans, clpP3clpP4 expression is constitutively repressed and the reason for the maintenance of this operon in Streptomyces has been elusive. ClpP activity is indispensable for survival of actinomycetes; we therefore tested whether the clpP3clpP4 operon, encoding an ADEP-insensitive Clp protease, contributes to a mechanism of ADEP resistance by target substitution. We report that in S. lividans, inactivation of ClpP1ClpP2 production or protease activity is indeed a mode of resistance to ADEP although it is neither the only nor the most frequent mode of resistance. The ABC transporter SclAB (orthologous to the Streptomyces coelicolor multidrug resistance pump SCO4959–SCO4960) is also able to confer ADEP resistance, and analysis of strains with sclAB deletions indicates that there are also other mechanisms of ADEP resistance.


Sign in / Sign up

Export Citation Format

Share Document