scholarly journals Role of HSP90 in Cancer

2021 ◽  
Vol 22 (19) ◽  
pp. 10317
Author(s):  
Bereket Birbo ◽  
Elechi E. Madu ◽  
Chikezie O. Madu ◽  
Aayush Jain ◽  
Yi Lu

HSP90 is a vital chaperone protein conserved across all organisms. As a chaperone protein, it correctly folds client proteins. Structurally, this protein is a dimer with monomer subunits that consist of three main conserved domains known as the N-terminal domain, middle domain, and the C-terminal domain. Multiple isoforms of HSP90 exist, and these isoforms share high homology. These isoforms are present both within the cell and outside the cell. Isoforms HSP90α and HSP90β are present in the cytoplasm; TRAP1 is present in the mitochondria; and GRP94 is present in the endoplasmic reticulum and is likely secreted due to post-translational modifications (PTM). HSP90 is also secreted into an extracellular environment via an exosome pathway that differs from the classic secretion pathway. Various co-chaperones are necessary for HSP90 to function. Elevated levels of HSP90 have been observed in patients with cancer. Despite this observation, the possible role of HSP90 in cancer was overlooked because the chaperone was also present in extreme amounts in normal cells and was vital to normal cell function, as observed when the drastic adverse effects resulting from gene knockout inhibited the production of this protein. Differences between normal HSP90 and HSP90 of the tumor phenotype have been better understood and have aided in making the chaperone protein a target for cancer drugs. One difference is in the conformation: HSP90 of the tumor phenotype is more susceptible to inhibitors. Since overexpression of HSP90 is a factor in tumorigenesis, HSP90 inhibitors have been studied to combat the adverse effects of HSP90 overexpression. Monotherapies using HSP90 inhibitors have shown some success; however, combination therapies have shown better results and are thus being studied for a more effective cancer treatment.

Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1972 ◽  
Author(s):  
Jūratė Skerniškytė ◽  
Emilija Karazijaitė ◽  
Julien Deschamps ◽  
Renatas Krasauskas ◽  
Romain Briandet ◽  
...  

Acinetobacter baumannii is a nosocomial human pathogen of increasing concern due to its multidrug resistance profile. The outer membrane protein A (OmpA) is an abundant bacterial cell surface component involved in A. baumannii pathogenesis. It has been shown that the C-terminal domain of OmpA is located in the periplasm and non-covalently associates with the peptidoglycan layer via two conserved amino acids, thereby anchoring OmpA to the cell wall. Here, we investigated the role of one of the respective residues, D268 in OmpA of A. baumannii clinical strain Ab169, on its virulence characteristics by complementing the ΔompA mutant with the plasmid-borne ompAD268A allele. We show that while restoring the impaired biofilm formation of the ΔompA strain, the Ab169ompAD268A mutant tended to form bacterial filaments, indicating the abnormalities in cell division. Moreover, the Ab169 OmpA D268-mediated association to peptidoglycan was required for the manifestation of twitching motility, desiccation resistance, serum-induced killing, adhesion to epithelial cells and virulence in a nematode infection model, although it was dispensable for the uptake of β-lactam antibiotics by outer membrane vesicles. Overall, the results of this study demonstrate that the OmpA C-terminal domain-mediated association to peptidoglycan is critical for a number of virulent properties displayed by A. baumannii outside and within the host.


2009 ◽  
Vol 296 (1) ◽  
pp. H13-H28 ◽  
Author(s):  
Boglarka Laczy ◽  
Bradford G. Hill ◽  
Kai Wang ◽  
Andrew J. Paterson ◽  
C. Roger White ◽  
...  

The posttranslational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide β- N-acetylglucosamine ( O-GlcNAc) is a highly dynamic and ubiquitous protein modification. Protein O-GlcNAcylation is rapidly emerging as a key regulator of critical biological processes including nuclear transport, translation and transcription, signal transduction, cytoskeletal reorganization, proteasomal degradation, and apoptosis. Increased levels of O-GlcNAc have been implicated as a pathogenic contributor to glucose toxicity and insulin resistance, which are both major hallmarks of diabetes mellitus and diabetes-related cardiovascular complications. Conversely, there is a growing body of data demonstrating that the acute activation of O-GlcNAc levels is an endogenous stress response designed to enhance cell survival. Reports on the effect of altered O-GlcNAc levels on the heart and cardiovascular system have been growing rapidly over the past few years and have implicated a role for O-GlcNAc in contributing to the adverse effects of diabetes on cardiovascular function as well as mediating the response to ischemic injury. Here, we summarize our present understanding of protein O-GlcNAcylation and its effect on the regulation of cardiovascular function. We examine the pathways regulating protein O-GlcNAcylation and discuss, in more detail, our understanding of the role of O-GlcNAc in both mediating the adverse effects of diabetes as well as its role in mediating cellular protective mechanisms in the cardiovascular system. In addition, we also explore the parallels between O-GlcNAc signaling and redox signaling, as an alternative paradigm for understanding the role of O-GlcNAcylation in regulating cell function.


2009 ◽  
Vol 56 (1) ◽  
Author(s):  
Magdalena Boncler ◽  
Cezary Watała

Despite the emerging evidence suggesting a proatherogenic role of C-reactive protein (CRP) in atherosclerosis, the contribution of CRP in pathogenesis of atherosclerosis and atherothrombosis has not been unequivocally defined. The role of CRP in pathophysiology/pathology seems to largely depend on its structure. Two CRP isoforms, the native pentameric and the modified monomeric one, differ substantially in their physiological functions, which is thought to origin from the considerable structural heterogeneity of the CRP molecule. The present review provides an overview of the experimental evidence with relevance to the clinical role(s) of various CRP isoforms. The biological role of the protein, its structure and distribution are discussed with particular emphasis on the diverse properties of the pentameric and monomeric forms of CRP. Some methodological aspects, related to experimental models and techniques of CRP preparation, are also critically reviewed.


1993 ◽  
Vol 291 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Y Murata ◽  
Y Kuroki ◽  
T Akino

Surfactant protein A (SP-A), with a reduced denatured molecular mass of 26-38 kDa, is characterized by a collagen-like sequence in the N-terminal half of the protein. This protein forms an oligomeric structure which is dependent upon this collagenous domain. SP-A has been demonstrated to function as an inhibitor of phospholipid secretion by primary cultures of alveolar type II cells via a cell surface receptor for the protein. However, the receptor-binding domain of SP-A has not been identified. The purpose of the present study was to investigate the role of the C-terminal domain of SP-A in binding to type II cells and regulation of phospholipid secretion. A monoclonal antibody to human SP-A, whose epitope was localized at the C-terminal domain of the protein, abolished the inhibitory activity of human SP-A on lipid secretion by type II cells, and attenuated the ability of human SP-A to compete with 125I-(rat SP-A) for receptor binding. SP-A was then digested with collagenase and the collagenase-resistant fragment (CRF), which is the C-terminal domain of SP-A (thus lacking the N-terminal domain), was isolated. Gel filtration chromatography revealed that CRF exists as a monomer in solution containing Ca2+. CRF had the ability to inhibit phospholipid secretion, although at a higher concentration than for SP-A, and was also able to compete with 125I-(rat SP-A) for binding to type II cells. A direct binding study showed that CRF bound to type II cells in a concentration-dependent manner. The present study demonstrates that the non-collagenous, C-terminal, domain of SP-A is responsible for the protein's inhibitory effect on lipid secretion and its binding to type II cells.


1985 ◽  
Vol 161 (5) ◽  
pp. 1013-1028 ◽  
Author(s):  
A Fuks ◽  
D Zucker-Franklin

It has been demonstrated previously that the acute phase reactant, serum amyloid A (SAA), is subject to degradation by surface membrane-associated proteinases of peripheral blood monocytes. However, monocytes obtained from the blood of patients with amyloidosis degraded SAA incompletely, leaving a cleavage product that, biochemically and immunologically, resembled the amyloid protein A (AA) deposited in their tissues. To investigate the role of fixed macrophages in amyloidogenesis and to establish more definitively that amyloid deposition is attributable to faulty processing of the precursor protein rather than aberrant synthesis, secondary amyloidosis was induced in C57BL/6J mice by serial injections of casein. Kupffer cells (KC) were isolated from livers of mice that had received 0, 8, 13, 18, and greater than 30 injections of the stimulant. The cells were cultured with SAA for 4, 8, and 18 h and then subjected to electron microscopy and enzyme analyses. The medium was analyzed by SDS-PAGE to determine the amount of residual SAA and/or the appearance of AA. KC of healthy animals degraded SAA completely whereas KC of stimulated mice showed increasing amounts of residual SAA and the appearance of the AA cleavage product. The AA peptide appeared in KC cultures early during the course of casein injections and before any amyloid could be demonstrated in the organs of the stimulated mice. The addition of KC isolated from healthy mice to cultures that had produced AA eliminated the abnormal peptide. The results, indicate that defective KC function precedes amyloidosis. The abnormal AA cleavage product formed by such cells is still susceptible to hydrolysis by normal cells. In addition, ultrastructural evidence is presented that suggests that KC may also play a role in fibrillogenesis of the AA protein.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1201
Author(s):  
Stella A. Polido ◽  
Janine Kamps ◽  
Jörg Tatzelt

The mammalian prion protein (PrPC) is composed of a large intrinsically disordered N-terminal and a structured C-terminal domain, containing three alpha-helical regions and a short, two-stranded beta-sheet. Traditionally, the activity of a protein was linked to the ability of the polypeptide chain to adopt a stable secondary/tertiary structure. This concept has been extended when it became evident that intrinsically disordered domains (IDDs) can participate in a broad range of defined physiological activities and play a major functional role in several protein classes including transcription factors, scaffold proteins, and signaling molecules. This ability of IDDs to engage in a variety of supramolecular complexes may explain the large number of PrPC-interacting proteins described. Here, we summarize diverse physiological and pathophysiological activities that have been described for the unstructured N-terminal domain of PrPC. In particular, we focus on subdomains that have been conserved in evolution.


Author(s):  
A.J. Mia ◽  
L.X. Oakford ◽  
T. Yorio

Protein kinase C (PKC) isozymes, when activated, are translocated to particulate membrane fractions for transport to the apical membrane surface in a variety of cell types. Evidence of PKC translocation was demonstrated in human megakaryoblastic leukemic cells, and in cardiac myocytes and fibroblasts, using FTTC immunofluorescent antibody labeling techniques. Recently, we reported immunogold localizations of PKC subtypes I and II in toad urinary bladder epithelia, following 60 min stimulation with Mezerein (MZ), a PKC activator, or antidiuretic hormone (ADH). Localization of isozyme subtypes I and n was carried out in separate grids using specific monoclonal antibodies with subsequent labeling with 20nm protein A-gold probes. Each PKC subtype was found to be distributed singularly and in discrete isolated patches in the cytosol as well as in the apical membrane domains. To determine if the PKC isozymes co-localized within the cell, a double immunogold labeling technique using single grids was utilized.


2018 ◽  
Vol 34 (4) ◽  
pp. 229-237 ◽  
Author(s):  
Francesca Chiesi ◽  
Andrea Bonacchi ◽  
Caterina Primi ◽  
Alessandro Toccafondi ◽  
Guido Miccinesi

Abstract. The present study aimed at evaluating if the three-item sense of coherence (SOC) scale developed by Lundberg and Nystrom Peck (1995) can be effectively used for research purpose in both nonclinical and clinical samples. To provide evidence that it represents adequately the measured construct we tested its validity in a nonclinical (N = 658) and clinical sample (N = 764 patients with cancer). Results obtained in the nonclinical sample attested a positive relation of SOC – as measured by the three-item SOC scale – with Antonovsky’s 13-item and 29-item SOC scales (convergent validity), and with dispositional optimism, sense of mastery, anxiety, and depression symptoms (concurrent validity). Results obtained in the clinical sample confirmed the criterion validity of the scale attesting the positive role of SOC – as measured by the three-item SOC scale – on the person’s capacity to respond to illness and treatment. The current study provides evidence that the three-item SOC scale is a valid, low-loading, and time-saving instrument for research purposes on large sample.


Pneumologie ◽  
2011 ◽  
Vol 65 (12) ◽  
Author(s):  
S Barkha ◽  
M Gegg ◽  
H Lickert ◽  
M Königshoff

Sign in / Sign up

Export Citation Format

Share Document