scholarly journals Cardiomyocyte Dysfunction in Inherited Cardiomyopathies

2021 ◽  
Vol 22 (20) ◽  
pp. 11154
Author(s):  
Roua Hassoun ◽  
Heidi Budde ◽  
Andreas Mügge ◽  
Nazha Hamdani

Inherited cardiomyopathies form a heterogenous group of disorders that affect the structure and function of the heart. Defects in the genes encoding sarcomeric proteins are associated with various perturbations that induce contractile dysfunction and promote disease development. In this review we aimed to outline the functional consequences of the major inherited cardiomyopathies in terms of myocardial contraction and kinetics, and to highlight the structural and functional alterations in some sarcomeric variants that have been demonstrated to be involved in the pathogenesis of the inherited cardiomyopathies. A particular focus was made on mutation-induced alterations in cardiomyocyte mechanics. Since no disease-specific treatments for familial cardiomyopathies exist, several novel agents have been developed to modulate sarcomere contractility. Understanding the molecular basis of the disease opens new avenues for the development of new therapies. Furthermore, the earlier the awareness of the genetic defect, the better the clinical prognostication would be for patients and the better the prevention of development of the disease.

Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 613-621 ◽  
Author(s):  
Douglas R Dorer ◽  
Jamie A Rudnick ◽  
Etsuko N Moriyama ◽  
Alan C Christensen

Abstract Within the unique Triplo-lethal region (Tpl) of the Drosophila melanogaster genome we have found a cluster of 20 genes encoding a novel family of proteins. This family is also present in the Anopheles gambiae genome and displays remarkable synteny and sequence conservation with the Drosophila cluster. The family is also present in the sequenced genome of D. pseudoobscura, and homologs have been found in Aedes aegypti mosquitoes and in four other insect orders, but it is not present in the sequenced genome of any noninsect species. Phylogenetic analysis suggests that the cluster evolved prior to the divergence of Drosophila and Anopheles (250 MYA) and has been highly conserved since. The ratio of synonymous to nonsynonymous substitutions and the high codon bias suggest that there has been selection on this family both for expression level and function. We hypothesize that this gene family is Tpl, name it the Osiris family, and consider possible functions. We also predict that this family of proteins, due to the unique dosage sensitivity and the lack of homologs in noninsect species, would be a good target for genetic engineering or novel insecticides.


2021 ◽  
Vol 22 (5) ◽  
pp. 2732
Author(s):  
Nadine Reichhart ◽  
Vladimir M. Milenkovic ◽  
Christian H. Wetzel ◽  
Olaf Strauß

The anoctamin (TMEM16) family of transmembrane protein consists of ten members in vertebrates, which act as Ca2+-dependent ion channels and/or Ca2+-dependent scramblases. ANO4 which is primarily expressed in the CNS and certain endocrine glands, has been associated with various neuronal disorders. Therefore, we focused our study on prioritizing missense mutations that are assumed to alter the structure and stability of ANO4 protein. We employed a wide array of evolution and structure based in silico prediction methods to identify potentially deleterious missense mutations in the ANO4 gene. Identified pathogenic mutations were then mapped to the modeled human ANO4 structure and the effects of missense mutations were studied on the atomic level using molecular dynamics simulations. Our data show that the G80A and A500T mutations significantly alter the stability of the mutant proteins, thus providing new perspective on the role of missense mutations in ANO4 gene. Results obtained in this study may help to identify disease associated mutations which affect ANO4 protein structure and function and might facilitate future functional characterization of ANO4.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Peng Chen ◽  
Hongyang Jing ◽  
Mingtao Xiong ◽  
Qian Zhang ◽  
Dong Lin ◽  
...  

AbstractThe genes encoding for neuregulin1 (NRG1), a growth factor, and its receptor ErbB4 are both risk factors of major depression disorder and schizophrenia (SZ). They have been implicated in neural development and synaptic plasticity. However, exactly how NRG1 variations lead to SZ remains unclear. Indeed, NRG1 levels are increased in postmortem brain tissues of patients with brain disorders. Here, we studied the effects of high-level NRG1 on dendritic spine development and function. We showed that spine density in the prefrontal cortex and hippocampus was reduced in mice (ctoNrg1) that overexpressed NRG1 in neurons. The frequency of miniature excitatory postsynaptic currents (mEPSCs) was reduced in both brain regions of ctoNrg1 mice. High expression of NRG1 activated LIMK1 and increased cofilin phosphorylation in postsynaptic densities. Spine reduction was attenuated by inhibiting LIMK1 or blocking the NRG1–LIMK1 interaction, or by restoring NRG1 protein level. These results indicate that a normal NRG1 protein level is necessary for spine homeostasis and suggest a pathophysiological mechanism of abnormal spines in relevant brain disorders.


2004 ◽  
Vol 24 (16) ◽  
pp. 7179-7187 ◽  
Author(s):  
Bartholomew A. Pederson ◽  
Hanying Chen ◽  
Jill M. Schroeder ◽  
Weinian Shou ◽  
Anna A. DePaoli-Roach ◽  
...  

ABSTRACT Glycogen serves as a repository of glucose in many mammalian tissues. Mice lacking this glucose reserve in muscle, heart, and several other tissues were generated by disruption of the GYS1 gene, which encodes an isoform of glycogen synthase. Crossing mice heterozygous for the GYS1 disruption resulted in a significant underrepresentation of GYS1-null mice in the offspring. Timed matings established that Mendelian inheritance was followed for up to 18.5 days postcoitum (dpc) and that ∼90% of GYS1-null animals died soon after birth due to impaired cardiac function. Defects in cardiac development began between 11.5 and 14.5 dpc. At 18.5 dpc, the hearts were significantly smaller, with reduced ventricular chamber size and enlarged atria. Consistent with impaired cardiac function, edema, pooling of blood, and hemorrhagic liver were seen. Glycogen synthase and glycogen were undetectable in cardiac muscle and skeletal muscle from the surviving null mice, and the hearts showed normal morphology and function. Congenital heart disease is one of the most common birth defects in humans, at up to 1 in 50 live births. The results provide the first direct evidence that the ability to synthesize glycogen in cardiac muscle is critical for normal heart development and hence that its impairment could be a significant contributor to congenital heart defects.


Hematology ◽  
2009 ◽  
Vol 2009 (1) ◽  
pp. 344-350 ◽  
Author(s):  
Christoph Klein

Abstract Congenital neutropenia comprises a variety of genetically heterogeneous phenotypic traits. Molecular elucidation of the underlying genetic defects has yielded important insights into the physiology of neutrophil differentiation and function. Non-syndromic variants of congenital neutropenia are caused by mutations in ELA2, HAX1, GFI1, or WAS. Syndromic variants of congenital neutropenia may be due to mutations in genes controlling glucose metabolism (SLC37A4, G6PC3) or lysosomal function (LYST, RAB27A, ROBLD3/p14, AP3B1, VPS13B). Furthermore, defects in genes encoding ribosomal proteins (SBDS, RMRP) and mitochondrial proteins (AK2, TAZ) are associated with congenital neutropenia syndromes. Despite remarkable progress in the field, many patients with congenital neutropenia cannot yet definitively be classified by genetic terms. This review addresses diagnostic and therapeutic aspects of congenital neutropenia and covers recent molecular and pathophysiological insights of selected congenital neutropenia syndromes.


2020 ◽  
Author(s):  
Constantin-Cristian Topriceanu ◽  
James C Moon ◽  
Rebecca Hardy ◽  
Nishi Chaturvedi ◽  
Alun Hughes ◽  
...  

Aim: To study the association between the life course accumulation of health deficits and later life heart size and function using data from the 1946 National Survey of Heath and Development (NSHD) British birth cohort, the longest running birth cohort with continuous follow up in the world. Methods and Results: A multidimensional health deficit index (DI) looking at 45 health deficits was serially calculated at 4 time periods of the life course in NSHD participants (0 to 16, 19 to 44, 45 to 54 and 60 to 64 years), and from these the mean and total DI for the life course was derived (DImean, DIsum). The step change in deficit accumulation from one time period to another was also calculated. Echocardiographic data at 60-64 years provided: ejection fraction (EF), left ventricular mass indexed to body surface area (LVmassi, BSA), myocardial contraction fraction indexed to BSA (MCFi) and E/e. Generalized linear models assessed the association between DIs and echocardiographic parameters after adjustment for sex, socioeconomic position and body mass index. 1,375 NSHD participants were included (46.47% male). For each single new deficit accumulated at any one of the 4 time periods of the life course, LVmassi increased by 0.91 to 1.44% (p<0.013), while MCFi decreased by 0.6 to 1.02% (p<0.05 except at 45 to 54 years). One unit increase in DI at age 45 to 54 and 60 to 64 decreased LV EF by 11 to 12% (p<0.013). A single deficit step change occurring between 60-64 years and one of the earlier time periods, translated into significantly higher odds (2.1 to 78.5, p<0.020) of elevated LV filling pressure defined as E/e>13. Conclusion: The accumulation of health deficits at any time period of the life course associates with a maladaptive cardiac phenotype in older age, dominated by myocardial hypertrophy and poorer function. The burden of health deficits appears to strain the myocardium potentially leading to future cardiac dysfunction. Keywords: frailty; cardiovascular disease; ejection fraction; left ventricular mass index; myocardial contraction fraction; E/e.


2020 ◽  
Author(s):  
Luigi D’Angelo ◽  
Elisa Astro ◽  
Monica De Luise ◽  
Ivana Kurelac ◽  
Nikkitha Umesh-Ganesh ◽  
...  

ABSTRACTComplex I (CI) is the largest enzyme of the mitochondrial respiratory chain and its defects are the main cause of mitochondrial disease. To understand the mechanisms regulating the extremely intricate biogenesis of this fundamental bioenergetic machine, we analyzed the structural and functional consequences of the ablation of NDUFS3, a non-catalytic core subunit. We prove that in diverse mammalian cell types a small amount of functional CI can still be detected in the complete absence of NDUFS3. In addition, we have determined the dynamics of CI disassembly when the amount of NDUFS3 is gradually decreased. The process of degradation of the complex occurs in a hierarchical and modular fashion where the ND4-module remains stable and bound to TMEM126A. We have thus, uncovered the function of TMEM126A, the product of a disease gene causing recessive optic atrophy, as a factor necessary for the correct assembly and function of CI.


2019 ◽  
Author(s):  
Cassandra K. Hayne ◽  
Casey A. Schmidt ◽  
A. Gregory Matera ◽  
Robin E. Stanley

ABSTRACTThe splicing of tRNA introns is a critical step in pre-tRNA maturation. In archaea and eukaryotes, tRNA intron removal is catalyzed by the tRNA splicing endonuclease (TSEN) complex. Eukaryotic TSEN is comprised of four core subunits (TSEN54, TSEN2, TSEN34, and TSEN15). The human TSEN complex additionally co-purifies with the polynucleotide kinase CLP1; however, CLP1’s role in tRNA splicing remains unclear. Mutations in genes encoding all four TSEN subunits, as well as CLP1, are known to cause neurodegenerative disorders, yet the mechanisms underlying the pathogenesis of these disorders are unknown. Here, we developed a recombinant system that produces active TSEN complex. Co-expression of all four TSEN subunits is required for efficient formation and function of the complex. We show that human CLP1 associates with the active TSEN complex, but is not required for tRNA intron cleavage in vitro. Moreover, RNAi knockdown of the Drosophila CLP1 orthologue, cbc, promotes biogenesis of mature tRNAs and circularized tRNA introns (tricRNAs) in vivo. Collectively, these and other findings suggest that CLP1/cbc plays a regulatory role in tRNA splicing by serving as a negative modulator of the direct tRNA ligation pathway in animal cells.


2021 ◽  
Vol 22 (17) ◽  
pp. 9317
Author(s):  
Konstantinos Zifkos ◽  
Christophe Dubois ◽  
Katrin Schäfer

Extracellular vesicles (EVs) compose a heterogenous group of membrane-derived particles, including exosomes, microvesicles and apoptotic bodies, which are released into the extracellular environment in response to proinflammatory or proapoptotic stimuli. From earlier studies suggesting that EV shedding constitutes a cellular clearance mechanism, it has become evident that EV formation, secretion and uptake represent important mechanisms of intercellular communication and exchange of a wide variety of molecules, with relevance in both physiological and pathological situations. The putative role of EVs in hemostasis and thrombosis is supported by clinical and experimental studies unraveling how these cell-derived structures affect clot formation (and resolution). From those studies, it has become clear that the prothrombotic effects of EVs are not restricted to the exposure of tissue factor (TF) and phosphatidylserines (PS), but also involve multiplication of procoagulant surfaces, cross-linking of different cellular players at the site of injury and transfer of activation signals to other cell types. Here, we summarize the existing and novel clinical and experimental evidence on the role and function of EVs during arterial and venous thrombus formation and how they may be used as biomarkers as well as therapeutic vectors.


Sign in / Sign up

Export Citation Format

Share Document