scholarly journals Prediction of Functional Consequences of Missense Mutations in ANO4 Gene

2021 ◽  
Vol 22 (5) ◽  
pp. 2732
Author(s):  
Nadine Reichhart ◽  
Vladimir M. Milenkovic ◽  
Christian H. Wetzel ◽  
Olaf Strauß

The anoctamin (TMEM16) family of transmembrane protein consists of ten members in vertebrates, which act as Ca2+-dependent ion channels and/or Ca2+-dependent scramblases. ANO4 which is primarily expressed in the CNS and certain endocrine glands, has been associated with various neuronal disorders. Therefore, we focused our study on prioritizing missense mutations that are assumed to alter the structure and stability of ANO4 protein. We employed a wide array of evolution and structure based in silico prediction methods to identify potentially deleterious missense mutations in the ANO4 gene. Identified pathogenic mutations were then mapped to the modeled human ANO4 structure and the effects of missense mutations were studied on the atomic level using molecular dynamics simulations. Our data show that the G80A and A500T mutations significantly alter the stability of the mutant proteins, thus providing new perspective on the role of missense mutations in ANO4 gene. Results obtained in this study may help to identify disease associated mutations which affect ANO4 protein structure and function and might facilitate future functional characterization of ANO4.

2018 ◽  
Author(s):  
◽  
Ashutosh Shripad Phadte

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Cataractogenesis in the eye lens occurs as a result of protein aggregation. Of the multiple mutations in [alpha]A-crystallins associated with the development of congenital hereditary cataract, three identified mutations target R21 within the N- terminal domain of the protein. On structural and functional characterization of a recently identified mutant of [alpha]A-crystallin, [alpha]A-R21Q, we revealed the contribution of R21 in dictating the interaction of [alpha]A-crystallin with other proteins. [alpha]A-R21Q showed and enhanced chaperone-like function, and increased binding to lens fiber cell membranes. Transduction of mutant proteins in ARPE-19 cells prevented their apoptosis in the presence of oxidative stress, suggesting a role for R21 in modulating the anti-apoptotic function of [alpha]A-crystallin. In addition, the R21Q point mutation rescued the chaperone-like activity of [alpha]A-G98R crystallin as well as palliated [alpha]A-G98R mediated cytotoxicity otherwise observed in transduction experiments. Although another mutation, R157Q rescued the chaperone-like activity of [alpha]A-G98R, the double mutant exhibited a loss of its cytoprotective function. The results therefore implicate an important role of R21 in regulating the functional aspect of [alpha]A-crystallin. [alpha]A-crystallin derived peptides have been shown to prevent non-specific aggregation of unfolding proteins in vitro. We show that the [alpha]A-crystallin derived mini-chaperone (mini-[alpha]A) mediated stabilization of self-aggregating [alpha]A-G98R crystallin and bovine [subscript]-crystallin occurs via compensation of lost surface charge. The observation therefore suggests a plausible mechanism of action of [alpha]A-crystallin derived peptides of therapeutic interest.


2018 ◽  
Author(s):  
◽  
Ashutosh S. Phadte

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Cataractogenesis in the eye lens occurs as a result of protein aggregation. Of the multiple mutations in [alpha]A-crystallins associated with the development of congenital hereditary cataract, three identified mutations target R21 within the N-terminal domain of the protein. On structural and functional characterization of a recently identified mutant of [alpha]A-crystallin, [alpha]A-R21Q, we revealed the contribution of R21 in dictating the interaction of [alpha]A-crystallin with other proteins. [Alpha]A-R21Q showed and enhanced chaperone-like function, and increased binding to lens fiber cell membranes. Transduction of mutant proteins in ARPE-19 cells prevented their apoptosis in the presence of oxidative stress, suggesting a role for R21 in modulating the anti-apoptotic function of [alpha]A-crystallin. In addition, the R21Q point mutation rescued the chaperone-like activity of [alpha]A-G98R crystallin as well as palliated [alpha]A-G98R mediated cytotoxicity otherwise observed in transduction experiments. Although another mutation, R157Q rescued the chaperone-like activity of [alpha]A-G98R, the double mutant exhibited a loss of its cytoprotective function. The results therefore implicate an important role of R21 in regulating the functional aspect of [alpha]A-crystallin. [Alpha]A-crystallin derived peptides have been shown to prevent non-specific aggregation of unfolding proteins in vitro. We show that the [alpha]A-crystallin derived mini-chaperone (mini-[alpha]A) mediated stabilization of self-aggregating [alpha]A-G98R crystallin and bovine [gamma]-crystallin occurs via compensation of lost surface charge. The observation therefore suggests a plausible mechanism of action of [alpha]A-crystallin derived peptides of therapeutic interest.


2020 ◽  
Author(s):  
Ryan Weber ◽  
Martin McCullagh

<p>pH-switchable, self-assembling materials are of interest in biological imaging and sensing applications. Here we propose that combining the pH-switchability of RXDX (X=Ala, Val, Leu, Ile, Phe) peptides and the optical properties of coumarin creates an ideal candidate for these materials. This suggestion is tested with a thorough set of all-atom molecular dynamics simulations. We first investigate the dependence of pH-switchabiliy on the identity of the hydrophobic residue, X, in the bare (RXDX)<sub>4</sub> systems. Increasing the hydrophobicity stabilizes the fiber which, in turn, reduces the pH-switchabilty of the system. This behavior is found to be somewhat transferable to systems in which a single hydrophobic residue is replaced with a coumarin containing amino acid. In this case, conjugates with X=Ala are found to be unstable and both pHs while conjugates with X=Val, Leu, Ile and Phe are found to form stable β-sheets at least at neutral pH. The (RFDF)<sub>4</sub>-coumarin conjugate is found to have the largest relative entropy value of 0.884 +/- 0.001 between neutral and acidic coumarin ordering distributions. Thus, we posit that coumarin-(RFDF)<sub>4</sub> containing peptide sequences are ideal candidates for pH-sensing bioelectronic materials.</p>


2021 ◽  
Vol 2 (2) ◽  
pp. 311-338
Author(s):  
Giulia Della Rosa ◽  
Clarissa Ruggeri ◽  
Alessandra Aloisi

Exosomes (EXOs) are nano-sized informative shuttles acting as endogenous mediators of cell-to-cell communication. Their innate ability to target specific cells and deliver functional cargo is recently claimed as a promising theranostic strategy. The glycan profile, actively involved in the EXO biogenesis, release, sorting and function, is highly cell type-specific and frequently altered in pathological conditions. Therefore, the modulation of EXO glyco-composition has recently been considered an attractive tool in the design of novel therapeutics. In addition to the available approaches involving conventional glyco-engineering, soft technology is becoming more and more attractive for better exploiting EXO glycan tasks and optimizing EXO delivery platforms. This review, first, explores the main functions of EXO glycans and associates the potential implications of the reported new findings across the nanomedicine applications. The state-of-the-art of the last decade concerning the role of natural polysaccharides—as targeting molecules and in 3D soft structure manufacture matrices—is then analysed and highlighted, as an advancing EXO biofunction toolkit. The promising results, integrating the biopolymers area to the EXO-based bio-nanofabrication and bio-nanotechnology field, lay the foundation for further investigation and offer a new perspective in drug delivery and personalized medicine progress.


Genetics ◽  
2003 ◽  
Vol 163 (1) ◽  
pp. 91-101 ◽  
Author(s):  
Erin N Asleson ◽  
Dennis M Livingston

Abstract We investigated the stability of the Saccharomyces cerevisiae Rad52 protein to learn how a cell controls its quantity and longevity. We measured the cellular levels of wild-type and mutant forms of Rad52p when expressed from the RAD52 promoter and the half-lives of the various forms of Rad52p when expressed from the GAL1 promoter. The wild-type protein has a half-life of 15 min. rad52 mutations variably affect the cellular levels of the protein products, and these levels correlate with the measured half-lives. While missense mutations in the N terminus of the protein drastically reduce the cellular levels of the mutant proteins, two mutations—one a deletion of amino acids 210-327 and the other a missense mutation of residue 235—increase the cellular level and half-life more than twofold. These results suggest that Rad52p is subject to post-translational regulation. Proteasomal mutations have no effect on Rad52p half-life but increase the amount of RAD52 message. In contrast to Rad52p, the half-life of Rad51p is &gt;2 hr, and RAD51 expression is unaffected by proteasomal mutations. These differences between Rad52p and Rad51p suggest differential regulation of two proteins that interact in recombinational repair.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stephan Hirschi ◽  
David Kalbermatter ◽  
Zöhre Ucurum ◽  
Thomas Lemmin ◽  
Dimitrios Fotiadis

AbstractThe green-light absorbing proteorhodopsin (GPR) is the archetype of bacterial light-driven proton pumps. Here, we present the 2.9 Å cryo-EM structure of pentameric GPR, resolving important residues of the proton translocation pathway and the oligomerization interface. Superposition with the structure of a close GPR homolog and molecular dynamics simulations reveal conformational variations, which regulate the solvent access to the intra- and extracellular half channels harbouring the primary proton donor E109 and the proposed proton release group E143. We provide a mechanism for the structural rearrangements allowing hydration of the intracellular half channel, which are triggered by changing the protonation state of E109. Functional characterization of selected mutants demonstrates the importance of the molecular organization around E109 and E143 for GPR activity. Furthermore, we present evidence that helices involved in the stabilization of the protomer interfaces serve as scaffolds for facilitating the motion of the other helices. Combined with the more constrained dynamics of the pentamer compared to the monomer, these observations illustrate the previously demonstrated functional significance of GPR oligomerization. Overall, this work provides molecular insights into the structure, dynamics and function of the proteorhodopsin family that will benefit the large scientific community employing GPR as a model protein.


Author(s):  
Diana Hamdan ◽  
Lisa A. Robinson

Excessive infiltration of immune cells into the kidney is a key feature of acute and chronic kidney diseases. The family of chemokines are key drivers of this process. CX3CL1 (fractalkine) is one of two unique chemokines synthesized as a transmembrane protein which undergoes proteolytic cleavage to generate a soluble species. Through interacting with its cognate receptor, CX3CR1, CX3CL1 was originally shown to act as a conventional chemoattractant in the soluble form, and as an adhesion molecule in the transmembrane form. Since then, other functions of CX3CL1 beyond leukocyte recruitment have been described, including cell survival, immunosurveillance, and cell-mediated cytotoxicity. This review summarizes diverse roles of CX3CL1 in kidney disease and potential uses as a therapeutic target and novel biomarker. As the CX3CL1-CX3CR1 axis has been shown to contribute to both detrimental and protective effects in various kidney diseases, a thorough understanding of how the expression and function of CX3CL1 are regulated is needed to unlock its therapeutic potential.


Development ◽  
2000 ◽  
Vol 127 (23) ◽  
pp. 5157-5165 ◽  
Author(s):  
T. Vernoux ◽  
J. Kronenberger ◽  
O. Grandjean ◽  
P. Laufs ◽  
J. Traas

The process of organ positioning has been addressed, using the pin-formed 1 (pin1) mutant as a tool. PIN1 is a transmembrane protein involved in auxin transport in Arabidopsis. Loss of function severely affects organ initiation, and pin1 mutants are characterised by an inflorescence meristem that does not initiate any flowers, resulting in the formation of a naked inflorescence stem. This phenotype, combined with the proposed role of PIN1 in hormone transport, makes the mutant an ideal tool to study organ formation and phyllotaxis, and here we present a detailed analysis of the molecular modifications at the shoot apex caused by the mutation. We show that meristem structure and function are not severely affected in the mutant. Major alterations, however, are observed at the periphery of the pin1 meristem, where organ initiation should occur. Although two very early markers of organ initiation, LEAFY and AINTEGUMENTA, are expressed at the periphery of the mutant meristem, the cells are not recruited into distinct primordia. Instead a ring-like domain expressing those primordium specific genes is observed around the meristem. This ring-like domain also expresses a boundary marker, CUP-SHAPED COTYLEDON 2, involved in organ separation, showing that the zone at the meristem periphery has a hybrid identity. This implies that PIN1 is not only involved in organ outgrowth, but that it is also necessary for organ separation and positioning. A model is presented in which PIN1 and the local distribution of auxin control phyllotaxis.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012744
Author(s):  
Renzo Guerrini ◽  
Simona Balestrini ◽  
Elaine C. Wirrell ◽  
Matthew C. Walker

A monogenic aetiology can be identified in up to 40% of people with severe epilepsy. To address earlier and more appropriate treatment strategies, clinicians are required to know the implications that specific genetic causes might have on pathophysiology, natural history, comorbidities and treatment choices. In this narrative review, we summarise concepts on the genetic epilepsies based on the underlying pathophysiological mechanisms and present the current knowledge on treatment options based on evidence provided by controlled trials or studies with lower classification of evidence. Overall, evidence robust enough to guide antiseizure medication (ASM) choices in genetic epilepsies remains limited to the more frequent conditions for which controlled trials and observational studies have been possible. Most monogenic disorders are very rare and ASM choices for them are still based on inferences drawn from observational studies and early, often anecdotal, experiences with precision therapies. Precision medicine remains applicable to only a narrow number of patients with monogenic epilepsies and may target only part of the actual functional defects. Phenotypic heterogeneity is remarkable, and some genetic mutations activate epileptogenesis through their developmental effects, which may not be reversed postnatally. Other genes seem to have pure functional consequences on excitability, acting through either loss- or gain-of-function effects, and these may have opposite treatment implications. In addition, the functional consequences of missense mutations may be difficult to predict, making precision treatment approaches considerably more complex than estimated by deterministic interpretations. Knowledge of genetic aetiologies can influence the approach to surgical treatment of focal epilepsies. Identification of germline mutations in specific genes contraindicates surgery while mutations in other genes do not. Identification, quantification and functional characterization of specific somatic mutations before surgery using cerebrospinal fluid liquid biopsy or after surgery in brain specimens, will likely be integrated in planning surgical strategies and re-intervention after a first unsuccessful surgery as initial evidence suggests that mutational load may correlate with the epileptogenic zone. Promising future directions include gene manipulation by DNA or mRNA targeting; although most are still far from clinical use, some are in early phase clinical development.


Author(s):  
Shaolei Teng ◽  
Adebiyi Sobitan ◽  
Raina Rhoades ◽  
Dongxiao Liu ◽  
Qiyi Tang

Abstract The spike (S) glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the binding to the permissive cells. The receptor-binding domain (RBD) of SARS-CoV-2 S protein directly interacts with the human angiotensin-converting enzyme 2 (ACE2) on the host cell membrane. In this study, we used computational saturation mutagenesis approaches, including structure-based energy calculations and sequence-based pathogenicity predictions, to quantify the systemic effects of missense mutations on SARS-CoV-2 S protein structure and function. A total of 18 354 mutations in S protein were analyzed, and we discovered that most of these mutations could destabilize the entire S protein and its RBD. Specifically, residues G431 and S514 in SARS-CoV-2 RBD are important for S protein stability. We analyzed 384 experimentally verified S missense variations and revealed that the dominant pandemic form, D614G, can stabilize the entire S protein. Moreover, many mutations in N-linked glycosylation sites can increase the stability of the S protein. In addition, we investigated 3705 mutations in SARS-CoV-2 RBD and 11 324 mutations in human ACE2 and found that SARS-CoV-2 neighbor residues G496 and F497 and ACE2 residues D355 and Y41 are critical for the RBD–ACE2 interaction. The findings comprehensively provide potential target sites in the development of drugs and vaccines against COVID-19.


Sign in / Sign up

Export Citation Format

Share Document