scholarly journals Antileukemic Natural Product Induced Both Apoptotic and Pyroptotic Programmed Cell Death and Differentiation Effect

2021 ◽  
Vol 22 (20) ◽  
pp. 11239
Author(s):  
Wohn-Jenn Leu ◽  
Hsun-Shuo Chang ◽  
Ih-Sheng Chen ◽  
Jih-Hwa Guh ◽  
She-Hung Chan

Acute myeloid leukemia (AML) is one of the most common forms of leukemia. Despite advances in the management of such malignancies and the progress of novel therapies, unmet medical needs still exist in AML because of several factors, including poor response to chemotherapy and high relapse rates. Ardisianone, a plant-derived natural component with an alkyl benzoquinone structure, induced apoptosis in leukemic HL-60 cells. The determination of dozens of apoptosis-related proteins showed that ardisianone upregulated death receptors and downregulated the inhibitor of apoptosis protein (IAPs). Western blotting showed that ardisianone induced a dramatic increase in tumor necrosis factor receptor 2 (TNFR2) protein expression. Ardisianone also induced downstream signaling by activating caspase-8 and -3 and degradation in Bid, a caspase-8 substrate. Furthermore, ardisianone induced degradation in DNA fragmentation factor 45 kDa (DFF45), a subunit of inhibitors of caspase-activated DNase (ICAD). Q-VD-OPh (a broad-spectrum caspase inhibitor) significantly diminished ardisianone-induced apoptosis, confirming the involvement of caspase-dependent apoptosis. Moreover, ardisianone induced pyroptosis. Using transmission electron microscopic examination and Western blot analysis, key markers including gasdermin D, high mobility group box1 (HMGB1), and caspase-1 and -5 were detected. Notably, ardisianone induced the differentiation of the remaining survival cells, which were characterized by an increase in the expression of CD11b and CD68, two markers of macrophages and monocytes. Wright–Giemsa staining also showed the differentiation of cells into monocyte and macrophage morphology. In conclusion, the data suggested that ardisianone induced the apoptosis and pyroptosis of leukemic cells through downregulation of IAPs and activation of caspase pathways that caused gasdermin D cleavage and DNA double-stranded breaks and ultimately led to programmed cell death. Ardisianone also induced the differentiation of leukemic cells into monocyte-like and macrophage-like cells. The data suggested the potential of ardisianone for further antileukemic development.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2177-2177
Author(s):  
Duncan H Mak ◽  
Christa Manton ◽  
Michael Andreeff ◽  
Bing Z Carter

Abstract Abstract 2177 The antiapoptotic function of the inhibitors of apoptosis family of proteins (IAPs) is antagonized by mitochondria-released SMAC protein. The IAP-member XIAP suppresses apoptosis by directly binding and inhibiting caspase-9 and caspase-3, while cIAP1, a component of the cytoplasmic signaling complex containing TNF receptor associated factors, suppresses apoptosis via the caspase-8-mediated pathway. BV-6 (Genentech) is a bivalent SMAC-mimetic and has been shown to promote cell death by inducing cIAP autoubiquitination, NF-κB activation, and TNFα-dependent apoptosis. We examined its effect on leukemic cells and found that BV-6 only moderately induced apoptosis. The EC50 was found to be 15.3±5.1 μM at 48 hours in OCI-AML3 cells which are relatively sensitive. We then determined whether BV-6 sensitizes leukemic cells to the HDM2-inhibitor nutlin-3a and to Ara-C. p53 modulates the expression and activity of Bcl-2 family proteins and promotes the mitochondrial-mediated apoptosis. We showed previously that activation of p53 by nutlin-3a sensitizes AML cells to XIAP inhibition induced-death in part by promoting the release of SMAC from mitochondrion (Carter BZ et al., Blood 2010). We treated OCI-AML3 cells with BV-6, nutlin-3a or Ara-C, and BV-6+nutlin-3a or BV-6+Ara-C and found that the combination of BV-6 and nutlin-3a or BV-6 and Ara-C synergistically induced cell death in OCI-AML3 cells with a combination index (CI) of 0.27±0.11 and 0.22±0.05 (48 hours), respectively. To demonstrate that p53 activation is essential for the synergism of BV-6+nutlin-3a combination, we treated OCI-AML3 vector control and p53 knockdown cells with these two agents and found that the combination synergistically promoted cell death in the vector control (CI=0.47±0.15) but not in the p53 knockdown cells, as expected, while BV6+Ara-C was synergistic in both vector control and p53 knockdown cells (CI=0.15±0.03 and 0.08±0.03, respectively, 48 hours). BV-6 induced activation of caspase-8, caspase-9, and caspase-3 and decreased XIAP levels, but did not cause rapid cIAP1 degradation, as reported by others. To assess the contribution of death receptor-mediated apoptosis in BV-6-induced cell death, we treated Jurkat and caspase-8 mutated Jurkat cells (JurkatI9.2) with BV-6 and found that BV-6 induced cell death and significantly potentiated TRAIL-induced apoptosis in Jurkat cells (CI=0.14±0.08, 48 hours). Caspase-8 mutated JurkatI9.2 cells were significantly less sensitive to BV-6 than Jurkat cells and as expected, JurkatI9.2 was completely resistant to TRAIL. Collectively, we showed that the bivalent SMAC-mimetic BV-6 potentiates p53 activation-, chemotherapy-, and TRAIL-induced cell death, but has only minimal activity by itself in leukemic cells. SMAC-mimetics could be useful in enhancing the efficacy of different classes of therapeutic agents used in AML therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3394-3394
Author(s):  
Bing Z. Carter ◽  
Wendy D. Schober ◽  
Teresa McQueen ◽  
Randall L. Evans ◽  
Michael Andreeff

Abstract Triptolide, an immunosuppressor isolated from the Chinese herb, Tripterygium wilfordii Hook. F, has recently shown anti-tumor activities in a broad range of solid tumors. We examined its effects on leukemic cells and investigated mechanisms of apoptosis. Triptolide, at less than 100 nM, arrested cell growth and potently induced cell death in myeloid and lymphoid leukemic cells tested, including OCI-AML3, U937, Jurkat, KBM5, and K562 cells. In OCI-AML3 cells, triptolide induced caspase 3 activation, PARP cleavage and annexin V positivity with an IC50 of about 30 nM, at 24 hrs, all of which were inhibited by a general caspase inhibitor suggesting caspase dependent cell death. However, Triptolide-induced cell growth arrest was not affected by caspase inhibition. Treatment of OCI-AML3 cells with triptolide decreased XIAP and survivin expression, but did not affect Bcl2 and BclXL levels. Forced overexpression of XIAP attenuated Triptolide-induced cell death. Triptolide induced Bid cleavage, but Jurkat cells deficient in caspase 8 were only slightly less sensitive to triptolide than the wild-type counterpart indicating that Triptolide-induced cell death is caspase 8 independent. Jurkat cells deficient in receptor interacting protein (RIP) and therefore deficient in NFκB activation were resistant to Triptolide demonstrating that NFκB signaling is essential for Triptolide-induced cell death. Triptolide treatment induced cytosolic release of cytochrome C and loss of mitochondrial membrane potential, overexpression of Bcl2 effectively suppressed apoptosis induced by Triptolide, and caspase 9 knockout MEF cells were resistant to Triptolide suggesting criticality of the mitochondrial pathway. The antioxidants GSH (5 mM) and vitamin C (150 μM) did not protect from apoptotic cell death induced by Triptolide. In addition, Triptolide-induced apoptosis of blast crisis CML KBM5 cells was independent of their sensitivity or resistance to Imatinib: Triptolide killed Imatinib resistant KBMSTI cells as effectively as Imatinib sensitive KBM5 cells. Ex vivo studies showed that Triptolide also induced cell death in primary AML blasts. Collectively, our studies demonstrate that Triptolide potently induces caspase-dependent apoptosis and arrests cell growth in leukemic cells. Triptolide-induced cell death is dependent on NFκB signaling, and mediated by downregulation of XIAP and survivin through the mitochondrial pathway. The potent anti-leukemic activity of Triptolide in vitro warrants further investigation of this compound for the treatment of leukemia and other malignancies. This drug may also be potentially useful in overcoming Imatinib resistance in CML and Philadelphia chromosome positive ALL.


Blood ◽  
2004 ◽  
Vol 103 (6) ◽  
pp. 2299-2307 ◽  
Author(s):  
Masayuki Okada ◽  
Souichi Adachi ◽  
Tsuyoshi Imai ◽  
Ken-ichiro Watanabe ◽  
Shin-ya Toyokuni ◽  
...  

Abstract Caspase-independent programmed cell death can exhibit either an apoptosis-like or a necrosis-like morphology. The ABL kinase inhibitor, imatinib mesylate, has been reported to induce apoptosis of BCR-ABL–positive cells in a caspase-dependent fashion. We investigated whether caspases alone were the mediators of imatinib mesylate–induced cell death. In contrast to previous reports, we found that a broad caspase inhibitor, zVAD-fmk, failed to prevent the death of imatinib mesylate–treated BCR-ABL–positive human leukemic cells. Moreover, zVAD-fmk–preincubated, imatinib mesylate–treated cells exhibited a necrosis-like morphology characterized by cellular pyknosis, cytoplasmic vacuolization, and the absence of nuclear signs of apoptosis. These cells manifested a loss of the mitochondrial transmembrane potential, indicating the mitochondrial involvement in this caspase-independent necrosis. We excluded the participation of several mitochondrial factors possibly involved in caspase-independent cell death such as apoptosis-inducing factor, endonuclease G, and reactive oxygen species. However, we observed the mitochondrial release of the serine protease Omi/HtrA2 into the cytosol of the cells treated with imatinib mesylate or zVAD-fmk plus imatinib mesylate. Furthermore, serine protease inhibitors prevented the caspase-independent necrosis. Taken together, our results suggest that imatinib mesylate induces a caspase-independent, necrosis-like programmed cell death mediated by the serine protease activity of Omi/HtrA2.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie-Anaïs Locquet ◽  
Gabriel Ichim ◽  
Joseph Bisaccia ◽  
Aurelie Dutour ◽  
Serge Lebecque ◽  
...  

AbstractIn cancer cells only, TLR3 acquires death receptor properties by efficiently triggering the extrinsic pathway of apoptosis with Caspase-8 as apical protease. Here, we demonstrate that in the absence of Caspase-8, activation of TLR3 can trigger a form of programmed cell death, which is distinct from classical apoptosis. When TLR3 was activated in the Caspase-8 negative neuroblastoma cell line SH-SY5Y, cell death was accompanied by lysosomal permeabilization. Despite caspases being activated, lysosomal permeabilization as well as cell death were not affected by blocking caspase-activity, positioning lysosomal membrane permeabilization (LMP) upstream of caspase activation. Taken together, our data suggest that LMP with its deadly consequences represents a “default” death mechanism in cancer cells, when Caspase-8 is absent and apoptosis cannot be induced.


Blood ◽  
1993 ◽  
Vol 81 (11) ◽  
pp. 3091-3096 ◽  
Author(s):  
L Campos ◽  
JP Rouault ◽  
O Sabido ◽  
P Oriol ◽  
N Roubi ◽  
...  

The BCL-2 proto-oncogene encodes a mitochondrial protein that blocks programmed cell death. High amounts of bcl-2 protein are found not only in lymphoid malignancies, but also in normal tissues characterized by apoptotic cell death, including bone marrow. Using a monoclonal antibody to bcl-2 protein, we analyzed 82 samples of newly diagnosed acute myeloid leukemia. The number of bcl-2+ cells in each sample was heterogeneous (range, 0% to 95%), with a mean of 23%. The percentage of bcl-2+ cells was higher in M4 and M5 types, according to French- American-British classification, and in cases with high white blood cell counts. bcl-2 expression was also correlated with that of the stem cell marker CD34. In vitro survival of leukemic cells maintained in liquid culture in the absence of growth factors was significantly longer in cases with a high percentage of bcl-2+ cells. High expression of bcl-2 was associated with a low complete remission rate after intensive chemotherapy (29% in cases with 20% or more positive cells v 85% in cases with less than 20% positive cells, P < 10(-5)) and with a significantly shorter survival. In multivariate analysis, the percentage of bcl-2+ cells (or the blast survival in culture), age, and the percentage of CD34+ cells were independently associated with poor survival.


2008 ◽  
Vol 6 (9) ◽  
pp. 6
Author(s):  
A. Strasser ◽  
A. Villunger ◽  
P. Bouillet ◽  
E.M. Michalak ◽  
L.A. O'Reilly ◽  
...  

2018 ◽  
Vol 27 (1) ◽  
pp. 9-16
Author(s):  
Piret Hussar ◽  
Tõnu Järveots ◽  
Lazo Pendovski ◽  
Katerina Blagoevska ◽  
Trpe Ristoski ◽  
...  

Apoptosis is a process of programmed cell death that occurs in multicellular organisms. As T-2 toxin is known to induce apoptosis in mammalian cells, the aim of the present experiment was to study the toxic effect of T-2 on chicken liver tissue using apoptosis-related antibodies p21 and p53 which are involved in the p53/p21-mediated apoptotic signalling pathway. The experiment was conducted on fourteen 40-day-old broilers (Gallus gallus domesticus) who were divided into control and T-2 toxin groups. For the T-2 toxin group, T-2 toxin (Sigma, Germany) was dissolved in water and given per os for three consecutive days. The material of the liver was taken 24 hours after the last application. The specimens were fixed with 10% formalin and embedded into paraffin; slices 5 μm in thickness were cut followed by immunohistochemical staining with polyclonal primary antibodies p21 and p53 (Abcam, UK) according to the manufacturer’s guidelines (IHC kit, Abcam, UK). Strong expression of p21 and p53 found in hepatocytes, endotheliocytes and around blood vessels together with large tissue destructions in T-2 toxin group birds’ liver indicates apoptosis and histopathological changes in liver tissue during T-2 mycotoxicosis.


1999 ◽  
Vol 13 (2) ◽  
pp. 191-201 ◽  
Author(s):  
Melissa P. Allen ◽  
Chan Zeng ◽  
Kristina Schneider ◽  
Xiaoyan Xiong ◽  
Mary Kay Meintzer ◽  
...  

Abstract We identified Ark, the mouse homolog of the receptor tyrosine kinase Axl (Ufo, Tyro7), in a screen for novel factors involved in GnRH neuronal migration by using differential-display PCR on cell lines derived at two windows during GnRH neuronal development. Ark is expressed in Gn10 GnRH cells, developed from a tumor in the olfactory area when GnRH neurons are migrating, but not in GT1–7 cells, derived from a tumor in the forebrain when GnRH neurons are postmigratory. Since Ark (Axl) signaling protects from programmed cell death in fibroblasts, we hypothesized that it may play an antiapoptotic role in GnRH neurons. Gn10 (Ark positive) GnRH cells were more resistant to serum withdrawal-induced apoptosis than GT1–7 (Ark negative) cells, and this effect was augmented with the addition of Gas6, the Ark (Axl) ligand. Gas6/Ark stimulated the extracellular signal-regulated kinase, ERK, and the serine-threonine kinase, Akt, a downstream component of the phosphoinositide 3-kinase (PI3-K) pathway. To determine whether ERK or Akt activation is required for the antiapoptotic effects of Gas6/Ark in GnRH neurons, cells were serum starved in the absence or presence of Gas6, with or without inhibitors of ERK and PI3-K signaling cascades. Gas6 rescued Gn10 cells from apoptosis, and this effect was blocked by coincubation of the cells with the mitogen-activated protein/ERK kinase (MEK) inhibitor, PD98059, or wortmannin (but not rapamycin). These data support an important role for Gas6/Ark signaling via the ERK and PI3-K (via Akt) pathways in the protection of GnRH neurons from programmed cell death across neuronal migration.


Blood ◽  
2002 ◽  
Vol 99 (6) ◽  
pp. 2162-2171 ◽  
Author(s):  
Nicholas Mitsiades ◽  
Constantine S. Mitsiades ◽  
Vassiliki Poulaki ◽  
Kenneth C. Anderson ◽  
Steven P. Treon

Abstract Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL, Apo2 ligand) effectively kills multiple myeloma (MM) cells in vitro irrespective of refractoriness to dexamethasone and chemotherapy. Because clinical trials with this anticancer agent are expected shortly, we investigated the signaling pathway of TRAIL-induced apoptosis in MM. We detected rapid cleavage of caspases-8, -9, -3, and -6, as well as the caspase substrates poly(ADP-ribose) polymerase (PARP) and DNA fragmentation factor-45 (DFF45), but not caspase-10, upon TRAIL treatment in sensitive MM cells, pointing to caspase-8 as the apical caspase of TRAIL signaling in MM cells. These phenomena were not observed or were significantly delayed in TRAIL-resistant MM cells, suggesting that resistance may arise from inhibition at the level of caspase-8 activation. Higher levels of expression for various apoptosis inhibitors, including FLICE-inhibitory protein (FLIP), and lower procaspase-8 levels were present in TRAIL-resistant cells and sensitivity was restored by the protein synthesis inhibitor cycloheximide (CHX) and the protein kinase C (PKC) inhibitor bisindolylmaleimide (BIM), which both lowered FLIP and cellular inhibitor of apoptosis protein-2 (cIAP-2) protein levels. Forced expression of procaspase-8 or FLIP antisense oligonucleotides also sensitized TRAIL-resistant cells to TRAIL. Moreover, the cell permeable nuclear factor (NF)–κB inhibitor SN50, which sensitizes TRAIL-resistant cells to TRAIL, also inhibited cIAP2 protein expression. Finally, CHX, BIM, and SN50 facilitated the cleavage and activation of procaspase-8 in TRAIL-resistant cells, confirming that inhibition of TRAIL-induced apoptosis occurs at this level and that these agents sensitize MM cells by relieving this block. Our data set a framework for the clinical use of approaches that sensitize MM cells to TRAIL by agents that inhibit FLIP and cIAP-2 expression or augment caspase-8 activity.


Sign in / Sign up

Export Citation Format

Share Document