scholarly journals Side Lighting Enhances Morphophysiology and Runner Formation by Upregulating Photosynthesis in Strawberry Grown in Controlled Environment

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 24
Author(s):  
Jingli Yang ◽  
Jinnan Song ◽  
Byoung-Ryong Jeong

The significant effects of lighting on plants have been extensively investigated, but research has rarely studied the impact of different lighting directions for the strawberry plant. To understand the optimal lighting direction for better growth and development, this study investigated how strawberries respond to variations in the lighting direction to help fine-tune the growth environment for their development. We examined how the lighting direction affects plant morphophysiology by investigating plant growth parameters, leaf anatomy, epidermal cell elongation, stomatal properties, physiological characteristics, and expressions of runner induction-related genes (FaSOC1 and FaTFL1) and gibberellin (GA) biosyntheses-related genes (FaGA20ox2 and FaGA20ox4). In closed-type plant factory units, the rooted cuttings of strawberry (Fragaria × ananassa Duch.) ‘Suhlyang’ were subjected to a 10-h photoperiod with a 350 μmol∙m−2∙s−1 photosynthetic photon flux density (PPFD) provided by light-emitting diodes (LEDs) from three directions relative to the plants: top, side, and bottom. Our results demonstrated that the side lighting profoundly promoted not only morphophysiology, but also runner formation, by upregulating photosynthesis in strawberries. Side lighting can bring commercial benefits, which include reduced economic costs, easier controllability, and harmlessness to plants. This will help provide new insights for the propagation of the most commonly cultivated strawberries in South Korea.

2021 ◽  
Vol 22 (21) ◽  
pp. 12019
Author(s):  
Jingli Yang ◽  
Byoung Ryong Jeong

Light is one of the most important factors that influence plant growth and development. This study was conducted to examine how lighting direction affects plant morphophysiology by investigating plant growth parameters, leaf anatomy, epidermal cell elongation, stomatal properties, chloroplast arrangement, and physiological changes. In closed-type plant factory units, the rooted cuttings of two chrysanthemum (Chrysanthemum morifolium Ramat.) cultivars, ‘Gaya Glory’ and ‘Pearl Egg’, were subjected to a 10 h photoperiod with a 300 μmol∙m−2∙s−1 photosynthetic photon flux density (PPFD) provided by light-emitting diodes (LEDs) from three directions relative to the plant including the top, side, and bottom. Compared to the top or bottom lighting, the side lighting greatly enhanced the plant growth, improved the leaf internal structure and chloroplast arrangement, induced small stomata with a higher density, and promoted stomatal opening, which is associated with an increased stomatal conductance and photosynthetic efficiency. It is worth noting that the side lighting significantly enhanced the induction of branching and flowering for both cultivars., The plants grown with side lighting consistently exhibited the greatest physiological performance. We conclude that the lighting direction had a profound effect on the morphophysiological characteristics of chrysanthemum, and that side lighting dramatically promoted their growth and development, especially in their branching and flowering.


Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 143
Author(s):  
Neringa Rasiukevičiūtė ◽  
Aušra Brazaitytė ◽  
Viktorija Vaštakaitė-Kairienė ◽  
Alma Valiuškaitė

The study aimed to evaluate the effect of different photon flux density (PFD) and light-emitting diodes (LED) wavelengths on strawberry Colletotrichum acutatum growth characteristics. The C. acutatum growth characteristics under the blue 450 nm (B), green 530 nm (G), red 660 nm (R), far-red 735 nm (FR), and white 5700 K (W) LEDs at PFD 50, 100 and 200 μmol m−2 s−1 were evaluated. The effect on C. acutatum mycelial growth evaluated by daily measuring until five days after inoculation (DAI). The presence of conidia and size (width and length) evaluated after 5 DAI. The results showed that the highest inhibition of fungus growth was achieved after 1 DAI under B and G at 50 μmol m−2 s−1 PFD. Additionally, after 1–4 DAI under B at 200 μmol m−2 s−1 PFD. The lowest conidia width was under FR at 50 μmol m−2 s−1 PFD and length under FR at 100 μmol m−2 s−1 PFD. Various LED light wavelengths influenced differences in C. acutatum colonies color. In conclusion, different photosynthetic photon flux densities and wavelengths influence C. acutatum growth characteristics. The changes in C. acutatum morphological and phenotypical characteristics could be related to its ability to spread and infect plant tissues. This study’s findings could potentially help to manage C. acutatum by LEDs in controlled environment conditions.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 870 ◽  
Author(s):  
Filippos Bantis ◽  
Athanasios Koukounaras ◽  
Anastasios S. Siomos ◽  
Kalliopi Radoglou ◽  
Christodoulos Dangitsis

Watermelon is cultivated worldwide and is mainly grafted onto interspecific squash rootstocks. Light-emitting diodes (LEDs) can be implemented as light sources during indoor production of both species and their spectral quality is of great importance. The objective of the present study was to determine the optimal emission of LEDs with wide wavelength for the production of watermelon and interspecific squash seedlings in a growth chamber. Conditions were set at 22/20 °C temperature (day/night), 16 h photoperiod, and 85 ± 5 μmol m−2 s−1 photosynthetic photon flux density. Illumination was provided by fluorescent (FL, T0) lamps or four LEDs (T1, T2, T3, and T4) emitting varying wide spectra. Watermelon seedlings had greater shoot length, stem diameter, cotyledon area, shoot dry weight-to-length (DW/L) ratio, and Dickson’s quality index (DQI) under T1 and T3, while leaf area and shoot dry weight (DW) had higher values under T1. Interspecific squash seedlings had greater stem diameter, and shoot and root DW under T1 and T3, while leaf and cotyledon areas were favored under T1. In both species, T0 showed inferior development. It could be concluded that a light source with high red emission, relatively low blue emission, and a red:far-red ratio of about 3 units seems ideal for the production of high-quality watermelon (scion) and interspecific squash (rootstock) seedlings.


HortScience ◽  
2019 ◽  
Vol 54 (1) ◽  
pp. 95-99 ◽  
Author(s):  
Dave Llewellyn ◽  
Katherine Schiestel ◽  
Youbin Zheng

A greenhouse study was undertaken to investigate whether light-emitting diode (LED) technology can be used to replace high-pressure sodium (HPS) lighting for cut gerbera production during Canada’s traditional supplemental lighting (SL) season (November to March). The study was carried out at the University of Guelph’s research greenhouse, using concurrent replications of SL treatments within the same growing environment. LED (85% red, 15% blue) and HPS treatment plots were set up to provide equal amounts of supplemental photosynthetically active radiation (PAR) at bench level. This setup was used to assess the production of three cultivars of cut gerbera (Gerbera jamesonii H. Bolus ex Hook.f): Acapulco, Heatwave, and Terra Saffier. There were no treatment differences in SL intensity, with average SL photosynthetic photon flux density (PPFD) and daily light integral (DLI) of 55.9 µmol·m−2·s−1 and 2.3 mol·m−2·d−1, respectively. Flowers harvested from the LED treatment had a 1.9% larger flower diameter in ‘Acapulco’; 4.2% shorter and 3.8% longer stems in ‘Heatwave’ and ‘Terra Saffier’, respectively; and 7.7% and 8.6% higher fresh weights for ‘Acapulco’ and ‘Terra Saffier’, respectively, compared with flowers harvested from the HPS treatment. There were no differences in accumulated total or marketable flower harvests for any of the cultivars. The vase life of ‘Acapulco’ flowers grown under the LED treatment was 2.7 d longer than those grown under the HPS treatment, but there were no SL treatment effects on water uptake for any of the cultivars during the vase life trials. There were no SL treatment effects on specific leaf area for any of the cultivars. There were only minimal treatment differences in leaf, soil, and air temperatures. Cut gerbera crops grown with under LED SL had equivalent or better production and crop quality metrics compared with crops grown under HPS SL.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2483
Author(s):  
Alain Fortineau ◽  
Didier Combes ◽  
Céline Richard-Molard ◽  
Ela Frak ◽  
Alexandra Jullien

Plasticity of plant architecture is a promising lever to increase crop resilience to biotic and abiotic damage. Among the main drivers of its regulation are the spectral signals which occur via photomorphogenesis processes. In particular, branching, one of the yield components, is responsive to photosynthetic photon flux density (PPFD) and to red to far-red ratio (R:FR), both signals whose effects are tricky to decorrelate in the field. Here, we developed a device consisting of far-red light emitting diode (LED) rings. It can reduce the R:FR ratio to 0.14 in the vicinity of an organ without changing the PPFD in outdoor high irradiance fluctuating conditions, which is a breakthrough as LEDs have been mostly used in non-fluctuant controlled conditions at low irradiance over short periods of time. Applied at the base of rapeseed stems during the whole bolting-reproductive phase, LightCue induced an expected significant inhibitory effect on two basal targeted axillary buds and a strong unexpected stimulatory effect on the overall plant aerial architecture. It increased shoot/root ratio while not modifying the carbon balance. LightCue therefore represents a promising device for progress in the understanding of light signal regulation in the field.


2003 ◽  
Vol 51 (5) ◽  
pp. 573 ◽  
Author(s):  
Michael R. Ngugi ◽  
Mark A. Hunt ◽  
David Doley ◽  
Paul Ryan ◽  
Peter J. Dart

Acclimation of gas exchange to temperature and light was determined in 18-month-old plants of humid coastal (Gympie) and dry inland (Hungry Hills) provenances of Eucalyptus cloeziana F.Muell., and in those of a dry inland provenance of Eucalyptus argophloia Blakely. Plants were acclimated at day/night temperatures of 18/13, 23/18, 28/23 and 33/28�C in controlled-temperature glasshouses for 4 months. Light and temperature response curves were measured at the beginning and end of the acclimation period. There were no significant differences in the shape and quantum-yield parameters among provenances at 23, 28 and 33�C day temperatures. Quantum yield [μmol CO2 μmol–1 photosynthetic photon flux density (PPFD)] ranged from 0.04 to 0.06 and the light response shape parameter ranged from 0.53 to 0.78. Similarly, no consistent trends in the rate of dark respiration for plants of each provenance were identified at the four growth temperatures. Average values of dark respiration for the plants of the three provenances ranged from 0.61 to 1.86 μmol m–2 s–1. The optimum temperatures for net photosynthesis increased from 23 to 32�C for the humid- and from 25 to 33�C for the dry-provenance E. cloeziana and from 21 to 33�C for E. argophloia as daytime temperature of the growth environment increased from 18 to 33�C. These results have implications in predicting survival and productivity of E. cloeziana and E. argophloia in areas outside their natural distribution.


Author(s):  
Aistė Bagdonavičienė ◽  
Aušra Brazaitytė ◽  
Julė Jankauskienė ◽  
Pavelas Duchovskis

The objective of our studies was to evaluate the assimilative indices of cucumber (‘Pasalimo F1’) and tomato (‘Marissa F1’) transplants, cultivated under various photosynthetic photon flux densities (PPFD) were provided by light-emitting diodes (LEDs). Experiment was performed in phytotron complex of Institute of Horticulture, LRCAF. A system of high-power, solid-state lighting modules with 92 % 638 nm (red) + 665 nm (red) + 731 nm (far red) and 8 % 447 nm (blue) was used in the experiments. The generated PPFD of each type of five solid-state modules was ~200 and ~400 μmol m-2 s-1. Our experiment revealed that increased net assimilation rate (NAR) depended on increased PPFD of cucumber and tomato hybrid. 400 μmol m-2 s-1 LED illumination had positive effect on relative growth rate (RGR). Cucumbers which were grown under 200 μmol m-2 s-1 had bigger leaf area ratio (LAR) and specific leaf area (SLA), their development has been bigger as compared to higher 400 μmol m-2 s-1 PPFD. High PPFD LED illumination had positive effect on leaf weight ratio (LWR), shoot root ratio (SRR) and tomato transplants development. These studies with various photosynthetic photon flux densities (PPFD) and LEDs light should be continued throughout plant vegetation.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 671
Author(s):  
Anita Schroeter-Zakrzewska ◽  
Faisal Anggi Pradita

A closed system for plant production with artificial light is an innovative method of plant cultivation. The objective of this study was to investigate the effect of light colour on rooting cuttings and subsequent growth of chrysanthemum (Chrysanthemum × grandiflorum Ramat./Kitam.) During the experiments, the following conditions were maintained: photoperiod 16 h or 10 h, temperature 22 °C, relative humidity of 65–70%. LED lamps emitted the following light colours: white, blue, white + blue (50:50), and red + blue (75:25). For all light spectra, the photosynthetic photon flux density (PPFD) was 50 μmol m−2 s−1. The effectiveness of exposure to different light colours was measured with parameters: cutting weight (g), cutting length (cm), length of roots, and index of leaf greenness (SPAD). The measurements referred to plant features determining plant quality, i.e., the number of flower buds and flower head, the diameter of the flower head, height of plants, index of leaf greenness (SPAD), the number of leaves, and the fresh and dry weights of aboveground parts of plants. The rooting of cuttings and subsequent growth are integral processes in the cultivation of potted chrysanthemums. Both were differently affected by the colour of light from LED lamps. The exposure to red + blue light resulted in the highest leaf greenness index (SPAD) value and the shortest cuttings with the longest roots. White + blue light significantly influenced most of the growth parameters, except the height of the plants and the number of leaves.


Weed Science ◽  
1990 ◽  
Vol 38 (4-5) ◽  
pp. 351-357 ◽  
Author(s):  
David T. Patterson

Spurred anoda and velvetleaf were grown for 40 days in controlled-environment chambers in monocultures at densities of 2, 4, 8, and 12 plants per 20-cm-diam pot and in mixed culture with all combinations of 2, 4, 8, and 12 plants of each species per pot. The day/night temperature was 29/23 C, and the photosynthetic photon flux density (PPFD) was 1000 μE m–2s–1. Shoot dry weights and leaf areas of the two species were similar when they were grown in monoculture. However, in mixed culture spurred anoda exceeded velvetleaf in leaf area/plant and shoot weight/plant in 15 out of 16 treatments. Multiple linear regression equations relating shoot biomass/plant to the density of both species in mixed culture were calculated. Comparison of competition coefficients from these equations indicated that the competitive impact of a single spurred anoda plant was equivalent to the impact of 2.5 velvetleaf plants. In mixed culture, spurred anoda always contributed a greater proportion of the total shoot weight and total leaf area per pot than would be predicted from its proportion of the total plant population. These results indicate spurred anoda is competitively superior to velvetleaf.


HortScience ◽  
2021 ◽  
pp. 1-7
Author(s):  
Xiaonan Shi ◽  
Ricardo Hernández ◽  
Mark Hoffmann

Commercial strawberry (Fragaria ×ananassa Duch.) plants propagate through the development of stolons (runners) with attached daughter plants. While it is known that temperature and photoperiod affect strawberry propagation, little knowledge exists on whether cultural methods may influence stolon and daughter plant development. The objective of this study was to characterize the impact of three stolon removal treatments on the development of daughter plants in the ever-bearing strawberry ‘Albion’. Treatments included 1) stolon removal every 7 days, nine times total; 2) stolon removal every 21 days, three times total; and 3) one-time stolon removal after 63 days. Strawberry plants were grown in a controlled environment (26 °C, 507 μmol⋅m–2⋅s–1 photosynthetic photon flux density, 14-hour photoperiod) in soilless media and fertilized with a customized nutrient solution. Mother plants in the 63-day treatment produced more daughter plants (102 per plant), than in the 21-day treatment (33 per plant) and the 7-day treatment (16 per plant). In the 63-day treatment, daughter plants and stolons accumulated to 86.6% of the total biomass, to 42.9% in the 7-day treatment and to 60.6% of total biomass in the 21-day treatment. Mother plant organs (including roots, crown, and leaves) had less dry weight in the 63-day treatment compared with the 7-day treatment and 21-day treatment, respectively. Furthermore, the daughter plants produced at the 63-day treatment had smaller crown diameters (0.65 cm) and less dry weight (0.51 g) and a higher number of fully expanded leaves (2.9) and visible roots (13.4) compared with the 21-day treatment and the 7-day treatment. The results of this study show daughter plant production of strawberry plants declines significantly with shorter stolon removal intervals, indicating the need to adjust stolon removal in strawberry nurseries for optimal daughter plant production.


Sign in / Sign up

Export Citation Format

Share Document