scholarly journals Elevated Cytokine Levels in Aqueous Humor Are Associated with Peripheral Anterior Synechiae after Penetrating Keratoplasty

2021 ◽  
Vol 22 (22) ◽  
pp. 12268
Author(s):  
Yuki Kusano ◽  
Takefumi Yamaguchi ◽  
Sota Nishisako ◽  
Takehiro Matsumura ◽  
Masaki Fukui ◽  
...  

Peripheral anterior synechiae (PAS) after corneal transplantation leads to refractory glaucoma and permanent loss of vision. However, the exact mechanism remains elusive. This study aimed to evaluate the association between cytokine levels in the aqueous humor (AqH) and the progression of PAS after penetrating keratoplasty (PKP). We measured 20 cytokine levels in AqH and assessed the correlation with PAS progression after PKP in 85 consecutive patients who underwent PKP. We also evaluated age-dependent alterations in PAS and cytokine levels in DBA2J mice. PAS developed in 38 (44.7%) of 85 eyes after PKP. The incidence of intraocular pressure increase after PKP was significantly greater in eyes with PAS (26.3%) than in those without PAS (2%, p = 0.0009). The PAS area at 12 months after PKP was significantly positively correlated with the preoperative levels of interleukin (IL)-6, interferon (IFN)-γ and monocyte chemotactic protein (MCP)-1 (p ≤ 0.049). In the DBA2J mice, an experimental glaucoma model that developed PAS at 50 weeks, the AqH levels of IL-2, IL-6, IL-10, IFN-γ, tumor necrosis factor-α, MCP-1 and granulocyte-macrophage colony-stimulating factor (GM-CSF) significantly increased at 50 weeks compared to 8 weeks (p ≤ 0.021). In conclusion, inflammatory alterations in the AqH microenvironment, such as high preoperative specific cytokine levels, can lead to PAS formation and glaucoma.

2020 ◽  
Author(s):  
Heping Wang ◽  
Yuqi Li ◽  
Song Han ◽  
Tongtong Niu

Abstract Background: Idiopathic macular holes are common ophthalmic manifestations with unknown pathogenesis. Thus far, there has been minimal research regarding the causes of idiopathic macular holes, especially with respect to the underlying immune mechanism. To provide clarity regarding the treatment and prognosis of idiopathic macular holes, specifically regarding the levels of cytokines in affected patients, this study examined and analyzed multiple cytokine levels in aqueous humor from patients with idiopathic macular holes. Methods: This comparative cross-sectional study included 38 patients in two groups: a cataract control group (n=17) and an idiopathic macular hole group (n=21). The levels of 48 cytokines in aqueous humor were detected by multiplex analysis with antibody-coupled magnetic beads. The Kolmogorov–Smirnov test was used to check whether the data were normally distributed; Student’s t-test and the Mann–Whitney U test were used to assess differences in cytokine levels between the two groups. Spearman correlation analysis was used to assess relationships among cytokine levels in the experimental group. Signaling pathways containing cytokines with significantly different expression in the experimental group were identified. Results: There were significant differences in aqueous humor cytokine levels between patients with idiopathic macular holes and patients in the cataract control group. Notably, hepatocyte growth factor (p=0.0001), GM-CSF (p=0.0111), and IFN-γ (p=0.0120) were significantly upregulated in the experimental group , while TNF-α (p=0.0032), GRO-α (p<0.0001), and MIF (p<0.0001) were significantly downregulated in the experimental group. Furthermore, the GM-CSF level showed significant positive correlations with levels of IL-1 (r=0.67904, p<0.001), IL-4 (r=0.76017, p<0.001), and IFN-γ (r=0.59922, p=0.004097) in the experimental group. Moreover, the levels of nerve growth factor and hepatocyte growth factor showed a significant positive correlation (r=0.64951, p=0.001441) in the experimental group. Conclusions: Patients with idiopathic macular holes showed significant variation in aqueous humor immune response after the onset of hole formation, including the recruitment of immune cells and regulation of cytokine expression. Our findings also suggest that it is not appropriate to use patients with macular holes as the control group in studies of aqueous humor cytokine levels in ophthalmic diseases.


2021 ◽  
Author(s):  
Heping Wang ◽  
Yuqi Li ◽  
Song Han ◽  
Tongtong Niu

Abstract Background: Idiopathic macular holes are common ophthalmic manifestations with unknown pathogenesis. Thus far, there has been minimal research regarding the causes of idiopathic macular holes, especially with respect to the underlying immune mechanism. To provide clarity regarding the treatment and prognosis of idiopathic macular holes, specifically regarding the levels of cytokines in affected patients, this study examined and analyzed multiple cytokine levels in aqueous humor from patients with idiopathic macular holes.Methods: This comparative cross-sectional study included 38 patients in two groups: a cataract control group (n=17) and an idiopathic macular hole group (n=21). The levels of 48 cytokines in aqueous humor were detected by multiplex analysis with antibody-coupled magnetic beads. The Kolmogorov–Smirnov test was used to check whether the data were normally distributed; Student’s t-test and the Mann–Whitney U test were used to assess differences in cytokine levels between the two groups. Spearman correlation analysis was used to assess relationships among cytokine levels in the experimental group. Signaling pathways containing cytokines with significantly different expression in the experimental group were identified.Results: There were significant differences in aqueous humor cytokine levels between patients with idiopathic macular holes and patients in the cataract control group. Notably, hepatocyte growth factor (p=0.0001), GM-CSF (p=0.0111), and IFN-γ (p=0.0120) were significantly upregulated in the experimental group, while TNF-α (p=0.0032), GRO-α (p<0.0001), and MIF (p<0.0001) were significantly downregulated in the experimental group. Furthermore, the GM-CSF level showed significant positive correlations with levels of IL-1 (r=0.67904, p<0.001), IL-4 (r=0.76017, p<0.001), and IFN-γ (r=0.59922, p=0.004097) in the experimental group. Moreover, the levels of nerve growth factor and hepatocyte growth factor showed a significant positive correlation (r=0.64951, p=0.001441) in the experimental group.Conclusions: Patients with idiopathic macular holes showed significant variation in aqueous humor immune response after the onset of hole formation, including the recruitment of immune cells and regulation of cytokine expression. Our findings also suggest that it is not appropriate to use patients with macular holes as the control group in studies of aqueous humor cytokine levels in ophthalmic diseases.


2020 ◽  
Author(s):  
Heping Wang ◽  
Yuqi Li ◽  
Song Han ◽  
Tongtong Niu

Abstract Background: Idiopathic macular holes are common ophthalmic manifestations with unknown pathogenesis. Thus far, there has been minimal research regarding the causes of idiopathic macular holes, especially with respect to the underlying immune mechanism. To provide clarity regarding the treatment and prognosis of idiopathic macular holes, specifically regarding the levels of cytokines in affected patients, this study examined and analyzed multiple cytokine levels in aqueous humor from patients with idiopathic macular holes.Methods: This comparative cross-sectional study included 38 patients in two groups: a cataract control group (n=17) and an idiopathic macular hole group (n=21). The levels of 48 cytokines in aqueous humor were detected by multiplex analysis with antibody-coupled magnetic beads. The Kolmogorov–Smirnov test was used to check whether the data were normally distributed; Student’s t-test and the Mann–Whitney U test were used to assess differences in cytokine levels between the two groups. Spearman correlation analysis was used to assess relationships among cytokine levels in the experimental group. Signaling pathways containing cytokines with significantly different expression in the experimental group were identified.Results: There were significant differences in aqueous humor cytokine levels between patients with idiopathic macular holes and patients in the cataract control group. Notably, hepatocyte growth factor (p=0.0001), GM-CSF (p=0.0111), and IFN-γ (p=0.0120) were significantly upregulated in the experimental group, while TNF-α (p=0.0032), GRO-α (p<0.0001), and MIF (p<0.0001) were significantly downregulated in the experimental group. Furthermore, the GM-CSF level showed significant positive correlations with levels of IL-1 (r=0.67904, p<0.001), IL-4 (r=0.76017, p<0.001), and IFN-γ (r=0.59922, p=0.004097) in the experimental group. Moreover, the levels of nerve growth factor and hepatocyte growth factor showed a significant positive correlation (r=0.64951, p=0.001441) in the experimental group.Conclusions: Patients with idiopathic macular holes showed significant variation in aqueous humor immune response after the onset of hole formation, including the recruitment of immune cells and regulation of cytokine expression. Our findings also suggest that it is not appropriate to use patients with macular holes as the control group in studies of aqueous humor cytokine levels in ophthalmic diseases.


2001 ◽  
Vol 69 (1) ◽  
pp. 129-136 ◽  
Author(s):  
Julie Riopel ◽  
MiFong Tam ◽  
Karkada Mohan ◽  
Michael W. Marino ◽  
Mary M. Stevenson

ABSTRACT The contribution of granulocyte-macrophage colony-stimulating factor (GM-CSF), a hematopoietic and immunoregulatory cytokine, to resistance to blood-stage malaria was investigated by infecting GM-CSF-deficient (knockout [KO]) mice with Plasmodium chabaudi AS. KO mice were more susceptible to infection than wild-type (WT) mice, as evidenced by higher peak parasitemia, recurrent recrudescent parasitemia, and high mortality. P. chabaudiAS-infected KO mice had impaired splenomegaly and lower leukocytosis but equivalent levels of anemia compared to infected WT mice. Both bone marrow and splenic erythropoiesis were normal in infected KO mice. However, granulocyte-macrophage colony formation was significantly decreased in these tissues of uninfected and infected KO mice, and the numbers of macrophages in the spleen and peritoneal cavity were significantly lower than in infected WT mice. Serum levels of gamma interferon (IFN-γ) were found to be significantly higher in uninfected KO mice, and the level of this cytokine was not increased during infection. In contrast, IFN-γ levels were significantly above normal levels in infected WT mice. During infection, tumor necrosis factor alpha (TNF-α) levels were significantly increased in KO mice and were significantly higher than TNF-α levels in infected WT mice. Our results indicate that GM-CSF contributes to resistance to P. chabaudi AS infection and that it is involved in the development of splenomegaly, leukocytosis, and granulocyte-macrophage hematopoiesis. GM-CSF may also regulate IFN-γ and TNF-α production and activity in response to infection. The abnormal responses seen in infected KO mice may be due to the lack of GM-CSF during development, to the lack of GM-CSF in the infected mature mice, or to both.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xin Xin ◽  
Yue Jin ◽  
Xin Wang ◽  
Beiyu Cai ◽  
Ziming An ◽  
...  

The incidence of nonalcoholic steatohepatitis (NASH) is increasing worldwide. Activation of Kupffer cells (KCs) is central to the development of diet-induced NASH. We investigated whether a combination of two active chemical components, geniposide and chlorogenic acid (GC), at a specific ratio (67 : 1), ameliorates diet-induced NASH and the underlying mechanisms involved. C57BL/6J mice exposed to a high-fat and high-cholesterol (HFHC) diet containing cholesterol, choline, and high-sugar drinking water, as well as RAW264.7 cells stimulated with lipopolysaccharide (LPS) were studied. The combination exerted a therapeutic effect on HFHC-induced NASH in mice. Simultaneously, GC was found to reduce the expression of cytokines secreted by hepatic macrophages, including tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), IL-1β, IL-6, monocyte chemotactic protein 1 (MCP-1), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Moreover, GC reduced the number of KCs expressing F4/80. Furthermore, TNF-α, inducible nitric oxide synthase (INOS), IL-1β, and IL-6 mRNA and TNF-α protein expression levels were suppressed upon GC treatment in RAW264.7 cells. Our findings suggest that GC has a strong anti-inflammatory effect in NASH, and this effect can be attributed to the suppression of KC activity in the liver.


2012 ◽  
Vol 443 (1) ◽  
pp. 297-305 ◽  
Author(s):  
Hiroaki Nakajima ◽  
Yoshiyuki Ezaki ◽  
Tomoyashu Nagai ◽  
Ryosuke Yoshioka ◽  
Genji Imokawa

We recently reported that overexpression of the elastase NEP (neutral endopeptidase) by fibroblasts plays a pivotal role in the mechanism of UVB-induced skin wrinkling by degrading dermal elastic fibres. Since UVB does not penetrate to the dermis, we hypothesized that factors secreted by UVB-exposed keratinocytes in the epidermis trigger fibroblasts in the dermis to increase their expression of NEP which then degrades the elastic fibres. In the present study, we characterized the epithelial–mesenchymal interaction between keratinocytes and fibroblasts which leads to increased expression of NEP. Human fibroblasts co-cultured with UVB-exposed human keratinocytes in cell inserts significantly increased their expression of NEP at the transcriptional, translational and enzymatic levels. Neutralizing antibodies to IL (interleukin)-1α or GM-CSF (granulocyte/macrophage colony-stimulating factor) significantly abolished the increased expression of NEP at the enzymatic levels in human fibroblasts co-cultured with UVB-exposed human keratinocytes, whereas neutralizing antibodies to IL-6, IL-8 or TNFα (tumour necrosis factor α) had no such effect. The addition of IL-1α or GM-CSF, but not TNFα, IL-6 or IL-8, at concentrations ranging from 1 to 10 nM, significantly stimulated the expression of NEP in human fibroblasts at the transcriptional and translational levels. These findings suggest that IL-1α and GM-CSF are intrinsic cytokines secreted by UVB-exposed keratinocytes that stimulate expression of NEP by fibroblasts.


1998 ◽  
Vol 188 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Chiara Zilocchi ◽  
Antonella Stoppacciaro ◽  
Claudia Chiodoni ◽  
Mariella Parenza ◽  
Nadia Terrazzini ◽  
...  

We analyzed the ability of interferon (IFN)-γ knockout mice (GKO) to reject a colon carcinoma transduced with interleukin (IL)-12 genes (C26/IL-12). Although the absence of IFN-γ impaired the early response and reduced the time to tumor onset in GKO mice, the overall tumor take rate was similar to that of BALB/c mice. In GKO mice, C26/IL-12 tumors had a reduced number of infiltrating leukocytes, especially CD8 and natural killer cells. Analysis of the tumor site, draining nodes, and spleens of GKO mice revealed reduced expression of IFN- inducible protein 10 and monokine induced by γ-IFN. Despite these defects, GKO mice that rejected C26/IL-12 tumor, and mice that were primed in vivo with irradiated C26/IL-12 cells, showed the same cytotoxic T lymphocyte activity but higher production of granulocyte/macrophage colony–stimulating factor (GM-CSF) as compared with control BALB/c mice. Treatment with monoclonal antibodies against GM-CSF abrogated tumor regression in GKO but not in BALB/c mice. CD4 T lymphocytes, which proved unnecessary or suppressive during rejection of C26/IL-12 cells in BALB/c mice, were required for tumor rejection in GKO mice. CD4 T cell depletion was coupled with a decline in GM-CSF expression by lymphocytes infiltrating the tumors or in the draining nodes, and with the reduction and disappearance of granulocytes and CD8 T cells, respectively, in tumor nodules. These results suggest that GM-CSF can substitute for IFN-γ in maintaining the CD8–polymorphonuclear leukocyte cross-talk that is a hallmark of tumor rejection.


Blood ◽  
2003 ◽  
Vol 101 (1) ◽  
pp. 143-150 ◽  
Author(s):  
Yves Delneste ◽  
Peggy Charbonnier ◽  
Nathalie Herbault ◽  
Giovanni Magistrelli ◽  
Gersende Caron ◽  
...  

Abstract Human monocytes differentiate into dendritic cells (DCs) or macrophages according to the nature of environmental signals. Monocytes stimulated with granulocyte-macrophage colony-stimulating factor (GM-CSF) plus interleukin 4 (IL-4) yield DCs. We tested here whether interferon-γ (IFN-γ), a potent activator of macrophages, may modulate monocyte differentiation. Addition of IFN-γ to IL-4 plus GM-CSF–stimulated monocytes switches their differentiation from DCs to CD14−CD64+ macrophages. IFN-γ increases macrophage colony-stimulating factor (M-CSF) and IL-6 production by IL-4 plus GM-CSF–stimulated monocytes by acting at the transcriptional level and acts together with IL-4 to up-regulate M-CSF but not IL-6 production. IFN-γ also increases M-CSF receptor internalization. Results from neutralizing experiments show that both M-CSF and IL-6 are involved in the ability of IFN-γ to skew monocyte differentiation from DCs to macrophages. Finally, this effect of IFN-γ is limited to early stages of differentiation. When added to immature DCs, IFN-γ up-regulates IL-6 but not M-CSF production and does not convert them to macrophages, even in the presence of exogenous M-CSF. In conclusion, IFN-γ shifts monocyte differentiation to macrophages rather than DCs through autocrine M-CSF and IL-6 production. These data show that IFN-γ controls the differentiation of antigen-presenting cells and thereby reveals a new mechanism by which IFN-γ orchestrates the outcome of specific immune responses.


2021 ◽  
Author(s):  
Marie-Helene Errera ◽  
Ana Pratas ◽  
Sylvain Fisson ◽  
Thomas Manicom ◽  
Marouane Boubaya ◽  
...  

To investigate which cytokines, chemokines and growth factors are involved in the immunopathogenesis of idiopathic uveitis, and whether cytokine profiles are associated with. Serum and aqueous humor (AH) samples of 75 patients with idiopathic uveitis were analyzed by multiplex immunoassay. Infectious controls consisted of 16 patients with ocular toxoplasmosis all confirmed by intraocular fluid analyses. Noninfectious controls consisted of 7 patients with Behçet disease related uveitis and 15 patients with sarcoidosis related uveitis. The control group consisted of AH and serum samples from 47 noninflammatory control patients with age-related cataract. In each sample, 27 immune mediators ± IL-21 and IL-23 were measured. In idiopathic uveitis, 13 of the 29 mediators, including most proinflammatory and vascular mediators such as IL-6, IL-8, IL-12, G-CSF, GM-CSF, MCP-1, IP-10, TNF-α and VEGF, were significantly elevated in the aqueous humor when compared to all controls. Moreover, IL-17, IP-10, and IL-21, were significantly elevated in the serum when compared to all controls. We clustered 4 subgroups of idiopathic uveitis using a statistical analysis of hierarchical unsupervised classification, characterized by the order of magnitude of concentrations of intraocular cytokines. The pathogenesis of idiopathic uveitis is characterized by the presence of predominantly proinflammatory cytokines and chemokines and vascular endothelial growth factor with high expression levels as compared to other causes of uveitis. There are indications for obvious Th-1/ IL21-Th17 pathways but also IL9-Th9 and increased IFN-γ-inducing cytokine (IL12) and IFN-γ-inducible CXC chemokine (IP-10). The combined data suggest that immune mediator expression is different among idiopathic uveitis. This study suggests various clusters among the idiopathic uveitis group rather than one specific uveitis entity.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1230-1238 ◽  
Author(s):  
Tan Jinquan ◽  
Sha Quan ◽  
Henrik H. Jacobi ◽  
Chen Jing ◽  
Anders Millner ◽  
...  

Abstract CXC chemokine receptor 3 (CXCR3), which is known to be expressed predominately on memory and activated T lymphocytes, is a receptor for both interferon γ (IFN-γ)–inducible protein 10 (γIP-10) and monokine induced by IFN-γ (Mig). We report the novel finding that CXCR3 is also expressed on CD34+ hematopoietic progenitors from human cord blood stimulated with granulocyte-macrophage colony-stimulating factor (GM-CSF) but not on freshly isolated CD34+ progenitors. Freshly isolated CD34+progenitors expressed low levels of CXCR3 messenger RNA, but this expression was highly up-regulated by GM-CSF, as indicated by a real-time quantitative reverse transcriptase–polymerase chain reaction technique. γIP-10 and Mig induced chemotaxis of GM-CSF–stimulated CD34+ progenitors by means of CXCR3, since an anti-CXCR3 monoclonal antibody (mAb) was found to block γIP-10–induced and Mig-induced CD34+ progenitor chemotaxis. These chemotactic attracted CD34+ progenitors are colony-forming units—granulocyte-macrophage. γIP-10 and Mig also induced GM-CSF–stimulated CD34+ progenitor adhesion and aggregation by means of CXCR3, a finding confirmed by the observation that anti-CXCR3 mAb blocked these functions of γIP-10 and Mig but not of chemokine stromal cell–derived factor 1α. γIP-10–induced and Mig-induced up-regulation of integrins (CD49a and CD49b) was found to play a crucial role in adhesion of GM-CSF–stimulated CD34+progenitors. Moreover, γIP-10 and Mig stimulated CXCR3 redistribution and cellular polarization in GM-CSF–stimulated CD34+progenitors. These results indicate that CXCR3–γIP-10 and CXCR3–Mig receptor-ligand pairs, as well as the effects of GM-CSF on them, may be especially important in the cytokine/chemokine environment for the physiologic and pathophysiologic events of differentiation of CD34+ hematopoietic progenitors into lymphoid and myeloid stem cells, subsequently immune and inflammatory cells. These processes include transmigration, relocation, differentiation, and maturation of CD34+ hematopoietic progenitors.


Sign in / Sign up

Export Citation Format

Share Document