scholarly journals Integration of Mutational Signature Analysis with 3D Chromatin Data Unveils Differential AID-Related Mutagenesis in Indolent Lymphomas

2021 ◽  
Vol 22 (23) ◽  
pp. 13015
Author(s):  
Julieta H. Sepulveda-Yanez ◽  
Diego Alvarez-Saravia ◽  
Jose Fernandez-Goycoolea ◽  
Jacqueline Aldridge ◽  
Cornelis A. M. van Bergen ◽  
...  

Activation-induced deaminase (AID) is required for somatic hypermutation in immunoglobulin genes, but also induces off-target mutations. Follicular lymphoma (FL) and chronic lymphocytic leukemia (CLL), the most frequent types of indolent B-cell tumors, are exposed to AID activity during lymphomagenesis. We designed a workflow integrating de novo mutational signatures extraction and fitting of COSMIC (Catalogue Of Somatic Mutations In Cancer) signatures, with tridimensional chromatin conformation data (Hi-C). We applied the workflow to exome sequencing data from lymphoma samples. In 33 FL and 30 CLL samples, 42% and 34% of the contextual mutations could be traced to a known AID motif. We demonstrate that both CLL and FL share mutational processes dominated by spontaneous deamination, failures in DNA repair, and AID activity. The processes had equiproportional distribution across active and nonactive chromatin compartments in CLL. In contrast, canonical AID activity and failures in DNA repair pathways in FL were significantly higher within the active chromatin compartment. Analysis of DNA repair genes revealed a higher prevalence of base excision repair gene mutations (p = 0.02) in FL than CLL. These data indicate that AID activity drives the genetic landscapes of FL and CLL. However, the final result of AID-induced mutagenesis differs between these lymphomas depending on chromatin compartmentalization and mutations in DNA repair pathways.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 48-49
Author(s):  
Karen Sweiss ◽  
Benjamin G Barwick ◽  
Gregory Sampang Calip ◽  
Damiano Rondelli ◽  
Craig C Hofmeister ◽  
...  

High dose melphalan and autologous stem cell transplantation is standard of care for the upfront treatment of multiple myeloma (MM). Several studies have shown upregulation of single DNA repair genes and whole DNA repair pathways as associated with melphalan resistance and poor outcomes after ASCT. Here we set out to identify the most important DNA repair enzymes and pathways to predict outcomes after ASCT using the MMRF CoMMpass dataset but instead found DNA repair gene expression to be a poor prognostic feature regardless of treatment. Of the 561 MM patients who received ASCT as part of frontline therapy, 378 (67%) patients had whole transcriptome sequencing data available for analysis in this study. The majority of patients in this cohort received a 3-drug novel agent-based regimen for first line treatment. We selected 81 genes of known function related to DNA damage repair across multiple pathways. Using the median mRNA expression as cutoff for each gene, we first compared PFS for high vs. low expressers and found 38 genes in non-homologous end joining (NHEJ), homologous recombination (HR), nucleotide excision repair (NER), base excision repair (BER) and Fanconi anemia (FA) pathway which predicted for inferior survival with higher expression (p≤0.05). We subsequently analyzed each gene individually in a multivariate Cox proportional hazards models adjusted for known prognostic and treatment-related factors (age, gender, race, ISS stage, LDH, normal/abnormal cytogenetics, high risk FISH/cytogenetics, cycles to first response, frontline treatment, and time to transplant) and found that 9 genes retained significance including 3 genes in NHEJ (POLL, PRKDC, NHEJ1), 3 in FA pathway (BRIP1, RMI1, FANCE) and 3 in MMR (MLH3, MSH2 and PMS1). In addition, increased pathway level gene overexpression for NHEJ (p=0.02) and MMR (0.009) pathways conferred worse PFS. Genes involved in NER did not retain significance despite this pathway being involved with repair of melphalan-induced bulky adducts formation. Additionally, high MMR pathway expression was significant despite this pathway not having a known role in repair of melphalan-induced DNA damage. To validate the specific importance of these genes in predicting response to ASCT, we tested whether high expression predicted outcomes in patients who did not undergo ASCT. In 387 non-ASCT patients with whole transcriptome sequencing available, NHEJ and MMR gene expression were significant predictors of PFS confirming that this finding was not specific to patients undergoing ASCT. We next correlated the expression of NHEJ and MMR genes and found significant co-expression of these genes (r=0.55-0.8), suggesting a common mediator leading to global upregulation of DNA repair. As increased MYC activity is a common finding in MM and is a master regulator of transcription, we hypothesized the DNA damage repair genes were upregulated by increased MYC activity. Gene Set Enrichment Analysis of hallmark gene sets confirmed that patients with increased DNA repair were also enriched for MYC targets (FDR=0.0063). Based on this, we hypothesized that oncogene-mediated constitutive DNA damage and replication stress (RS) are a hallmark of high risk and aggressive myeloma. Here we present novel findings to show that global DNA repair upregulation occurs in high risk disease as evidenced by the inferior PFS. We hypothesize that this could be attributed to MYC-related increased gene transcription resulting in DNA damage and RS which in turn recruits several DNA repair pathways. These specific DNA repair pathways and signal activation pathways involved with replication stress represent novel therapeutic targets in myeloma. Disclosures Calip: Flatiron Health: Current Employment. Hofmeister:Sanofi: Honoraria, Research Funding; Bristol Myers Squibb: Honoraria, Research Funding; Nektar: Honoraria, Research Funding; Imbrium: Honoraria; Janssen: Honoraria, Research Funding; Oncopeptides: Honoraria; Karyopharm: Honoraria, Research Funding; Oncolytics Biotech: Research Funding. Patel:Amgen: Consultancy; Celgene: Consultancy; Janssen: Consultancy.


Blood ◽  
2006 ◽  
Vol 108 (13) ◽  
pp. 4187-4193 ◽  
Author(s):  
Mazin A. Moufarij ◽  
Deepa Sampath ◽  
Michael J. Keating ◽  
William Plunkett

Abstract Oxaliplatin and fludarabine have different but potentially complementary mechanisms of action. Previous studies have shown that DNA repair is a major target for fludarabine. We postulate that potentiation of oxaliplatin toxicity by fludarabine may be due to the inhibition by fludarabine of the activity of the DNA excision repair pathways activated by oxaliplatin adducts. To test this, we investigated the cytotoxic interactions between the 2 drugs in normal and chronic lymphocytic leukemia (CLL) lymphocytes. In each population, the combination resulted in greater than additive killing. Analysis of oxaliplatin damage revealed that fludarabine enhanced accumulation of interstrand crosslinks (ICLs) in specific regions of the genome in both populations, but to a lesser extent in normal lymphocytes. The action of fludarabine on the removal of oxaliplatin ICLs was explored to investigate the mechanism by which oxaliplatin toxicity was increased by fludarabine. Lymphocytes from patients with CLL have a greater capacity for ICL unhooking compared with normal lymphocytes. In the presence of fludarabine the extent of repair was significantly reduced in both populations, more so in CLL. Our findings support a role of fludarabine-mediated DNA repair inhibition as a mechanism critical for the cytotoxic synergy of the 2 drugs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258269
Author(s):  
Bettina Meier ◽  
Nadezda V. Volkova ◽  
Bin Wang ◽  
Víctor González-Huici ◽  
Simone Bertolini ◽  
...  

Ionizing radiation (IR) is widely used in cancer therapy and accidental or environmental exposure is a major concern. However, little is known about the genome-wide effects IR exerts on germ cells and the relative contribution of DNA repair pathways for mending IR-induced lesions. Here, using C. elegans as a model system and using primary sequencing data from our recent high-level overview of the mutagenic consequences of 11 genotoxic agents, we investigate in detail the genome-wide mutagenic consequences of exposing wild-type and 43 DNA repair and damage response defective C. elegans strains to a Caesium (Cs-137) source, emitting γ-rays. Cs-137 radiation induced single nucleotide variants (SNVs) at a rate of ~1 base substitution per 3 Gy, affecting all nucleotides equally. In nucleotide excision repair mutants, this frequency increased 2-fold concurrently with increased dinucleotide substitutions. As observed for DNA damage induced by bulky DNA adducts, small deletions were increased in translesion polymerase mutants, while base changes decreased. Structural variants (SVs) were augmented with dose, but did not arise with significantly higher frequency in any DNA repair mutants tested. Moreover, 6% of all mutations occurred in clusters, but clustering was not significantly altered in any DNA repair mutant background. Our data is relevant for better understanding how DNA repair pathways modulate IR-induced lesions.


1985 ◽  
Vol 5 (2) ◽  
pp. 398-405 ◽  
Author(s):  
J S Rubin ◽  
V R Prideaux ◽  
H F Willard ◽  
A M Dulhanty ◽  
G F Whitmore ◽  
...  

The genes and gene products involved in the mammalian DNA repair processes have yet to be identified. Toward this end we made use of a number of DNA repair-proficient transformants that were generated after transfection of DNA from repair-proficient human cells into a mutant hamster line that is defective in the initial incision step of the excision repair process. In this report, biochemical evidence is presented that demonstrates that these transformants are repair proficient. In addition, we describe the molecular identification and cloning of unique DNA sequences closely associated with the transfected human DNA repair gene and demonstrate the presence of homologous DNA sequences in human cells and in the repair-proficient DNA transformants. The chromosomal location of these sequences was determined by using a panel of rodent-human somatic cell hybrids. Both unique DNA sequences were found to be on human chromosome 19.


JAMA Oncology ◽  
2021 ◽  
Author(s):  
Michael T. Schweizer ◽  
Smruthy Sivakumar ◽  
Hanna Tukachinsky ◽  
Ilsa Coleman ◽  
Navonil De Sarkar ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-32 ◽  
Author(s):  
Rihito Morita ◽  
Shuhei Nakane ◽  
Atsuhiro Shimada ◽  
Masao Inoue ◽  
Hitoshi Iino ◽  
...  

DNA is subjected to many endogenous and exogenous damages. All organisms have developed a complex network of DNA repair mechanisms. A variety of different DNA repair pathways have been reported: direct reversal, base excision repair, nucleotide excision repair, mismatch repair, and recombination repair pathways. Recent studies of the fundamental mechanisms for DNA repair processes have revealed a complexity beyond that initially expected, with inter- and intrapathway complementation as well as functional interactions between proteins involved in repair pathways. In this paper we give a broad overview of the whole DNA repair system and focus on the molecular basis of the repair machineries, particularly inThermus thermophilusHB8.


Sign in / Sign up

Export Citation Format

Share Document