scholarly journals Opioid Receptors and Protonation-Coupled Binding of Opioid Drugs

2021 ◽  
Vol 22 (24) ◽  
pp. 13353
Author(s):  
Samo Lešnik ◽  
Éva Bertalan ◽  
Urban Bren ◽  
Ana-Nicoleta Bondar

Opioid receptors are G-protein-coupled receptors (GPCRs) part of cell signaling paths of direct interest to treat pain. Pain may associate with inflamed tissue characterized by acidic pH. The potentially low pH at tissue targeted by opioid drugs in pain management could impact drug binding to the opioid receptor, because opioid drugs typically have a protonated amino group that contributes to receptor binding, and the functioning of GPCRs may involve protonation change. In this review, we discuss the relationship between structure, function, and dynamics of opioid receptors from the perspective of the usefulness of computational studies to evaluate protonation-coupled opioid-receptor interactions.

2007 ◽  
Vol 7 ◽  
pp. 1073-1081 ◽  
Author(s):  
Luigi F. Agnati ◽  
Giuseppina Leo ◽  
Susanna Genedani ◽  
Diego Guidolin ◽  
Nicola Andreoli ◽  
...  

It has been demonstrated that some viruses, such as the cytomegalovirus, code for G-protein coupled receptors not only to elude the immune system, but also to redirect cellular signaling in the receptor networks of the host cells. In view of the existence of receptor-receptor interactions, the hypothesis is introduced that these viral-coded receptors not only operate as constitutively active monomers, but also can affect other receptor function by interacting with receptors of the host cell. Furthermore, it is suggested that viruses could also insert not single receptors (monomers), but clusters of receptors (receptor mosaics), altering the cell metabolism in a profound way. The prevention of viral receptor-induced changes in host receptor networks may give rise to novel antiviral drugs that counteract viral-induced disease.


2020 ◽  
Vol 14 (2) ◽  
pp. 115-121 ◽  
Author(s):  
Arul James ◽  
John Williams

Opioids are a group of analgesic agents commonly used in clinical practice. The three classical opioid receptors are MOP, DOP and KOP. The NOP (N/OFQ) receptor is considered to be a non-opioid branch of the opioid receptor family. Opioid receptors are G-protein-coupled receptors which cause cellular hyperpolarisation when bound to opioid agonists. Opioids may be classified according to their mode of synthesis into alkaloids, semi-synthetic and synthetic compounds. Opioid use disorder (OUD) is an emerging issue and important lessons can be learnt from the United States where opioid epidemic was declared as a national emergency in 2017.


2019 ◽  
Vol 317 (2) ◽  
pp. G79-G89 ◽  
Author(s):  
Jesse J. DiCello ◽  
Pradeep Rajasekhar ◽  
Emily M. Eriksson ◽  
Ayame Saito ◽  
Arisbel B. Gondin ◽  
...  

Endocytosis is a major mechanism through which cellular signaling by G protein-coupled receptors (GPCRs) is terminated. However, recent studies demonstrate that GPCRs are internalized in an active state and continue to signal from within endosomes, resulting in effects on cellular function that are distinct to those arising at the cell surface. Endocytosis inhibitors are commonly used to define the importance of GPCR internalization for physiological and pathophysiological processes. Here, we provide the first detailed examination of the effects of these inhibitors on neurogenic contractions of gastrointestinal smooth muscle, a key preliminary step to evaluate the importance of GPCR endocytosis for gut function. Inhibitors of clathrin-mediated endocytosis (Pitstop2, PS2) or G protein-coupled receptor kinase-2/3-dependent phosphorylation (Takeda compound 101, Cmpd101), significantly reduced GPCR internalization. However, they also attenuated cholinergic contractions through different mechanisms. PS2 abolished contractile responses by colonic muscle to SNC80 and morphine, which strongly and weakly internalize δ-opioid and μ-opioid receptors, respectively. PS2 did not affect the increased myogenic contractile activity following removal of an inhibitory neural influence (tetrodotoxin) but suppressed electrically evoked neurogenic contractions. Ca2+ signaling by myenteric neurons in response to exogenous ATP was unaffected by PS2, suggesting inhibitory actions on neurotransmitter release rather than neurotransmission. In contrast, Cmpd101 attenuated contractions to the cholinergic agonist carbachol, indicating direct effects on smooth muscle. We conclude that, although PS2 and Cmpd101 are effective blockers of GPCR endocytosis in enteric neurons, these inhibitors are unsuitable for the study of neurally mediated gut function due to their inhibitory effects on neuromuscular transmission and smooth muscle contractility. NEW & NOTEWORTHY Internalization of activated G protein-coupled receptors is a major determinant of the type and duration of subsequent downstream signaling events. Inhibitors of endocytosis effectively block opioid receptor internalization in enteric neurons. The clathrin-dependent endocytosis inhibitor Pitstop2 blocks effects of opioids on neurogenic contractions of the colon in an internalization-independent manner. These inhibitors also significantly impact cholinergic neuromuscular transmission. We conclude that these tools are unsuitable for examination of the contribution of neuronal G protein-coupled receptor endocytosis to gastrointestinal motility.


2002 ◽  
Vol 365 (2) ◽  
pp. 429-440 ◽  
Author(s):  
Douglas RAMSAY ◽  
Elaine KELLETT ◽  
Mary McVEY ◽  
Stephen REES ◽  
Graeme MILLIGAN

Homo- and hetero-oligomerization of G-protein-coupled receptors (GPCRs) were examined in HEK-293 cells using two variants of bioluminescence resonance energy transfer (BRET). BRET2 (a variant of BRET) offers greatly improved separation of the emission spectra of the donor and acceptor moieties compared with traditional BRET. Previously recorded homo-oligomerization of the human δ-opioid receptor was confirmed using BRET2. Homo-oligomerization of the κ-opioid receptor was observed using both BRET techniques. Both homo- and hetero-oligomers, containing both δ- and κ-opioid receptors, were unaffected by the presence of receptor ligands. BRET detection of opioid receptor homo- and hetero-oligomers required expression of 50000–100000 copies of the receptor energy acceptor construct per cell. The effectiveness of δ—κ-opioid receptor hetero-oligomer formation was as great as for homomeric interactions. The capacity of the two opioid receptors to form oligomeric complexes with the β2-adrenoceptor was also assessed. Although such interactions were detected, at least 250000 copies per cell of the energy acceptor were required. Requirement for high levels of receptor expression was equally pronounced in attempts to measure hetero-oligomer formation between the κ-opioid receptor and the thyrotropin-releasing hormone receptor-1. These studies indicate that constitutively formed homo- and hetero-oligomers of opioid receptor subtypes can be detected in living cells containing less than 100000 copies of the receptors. However, although hetero-oligomeric interactions between certain less closely related GPCRs can be detected, they appear to be of lower affinity than homo- or hetero-oligomers containing closely related sequences. Interactions recorded between certain GPCR family members in heterologous expression systems are likely to be artefacts of extreme levels of overexpression.


1993 ◽  
Vol 295 (3) ◽  
pp. 625-628 ◽  
Author(s):  
Y Chen ◽  
A Mestek ◽  
J Liu ◽  
L Yu

By screening a rat brain cDNA library using a cloned mu opioid receptor cDNA as probe, a clone was identified that is very similar to both the mu and delta opioid receptor sequences. Transient expression of this clone in COS-7 cells showed that it encodes a kappa opioid receptor, designated KOR-1, which is capable of high-affinity binding to kappa-selective ligands. Treatment of transfected cell membranes with bremazocine, a kappa-selective agonist, resulted in a 53% decrease in adenylate cyclase activity, indicating that this kappa opioid receptor displays inhibitory coupling to adenylate cyclase. Thus, one member from each of the three opioid receptor types, mu, kappa and delta, has been molecularly cloned. Analysis of sequence similarities among these opioid receptors, as well as between opioid receptors and other G-protein-coupled receptors, revealed regions of sequence conservation that may underlie the ligand-binding and functional specificities of opioid receptors.


2000 ◽  
Vol 5 (3) ◽  
pp. 159-167 ◽  
Author(s):  
Peter Banks ◽  
Mylene Gosselin ◽  
Linda Prystay

Fluorescence polarization assays in 384-well microtiter plates have been demonstrated. The performance is suitable for high throughput drug screening applications with respect to speed of analysis, displaceable signal, precision, and sensitivity to various reagents. Rank order of potency was maintained relative to ['251]-ligand filtration assays, and the effects of the highly colored compounds, tartrazine and Chicago Sky Blue, were insignificant on the polarization signal up to a concentration of 1 tiM. These attributes suggest that accurate assessment of drug binding can be obtained.


2020 ◽  
Author(s):  
Thor C. Møller ◽  
Mie F. Pedersen ◽  
Jeffrey R. van Senten ◽  
Sofie D. Seiersen ◽  
Jesper M. Mathiesen ◽  
...  

AbstractMost G protein-coupled receptors (GPCRs) recruit β-arrestins and internalize upon agonist stimulation. For the μ-opioid receptor (μ-OR), this process has been linked to development of opioid tolerance. GPCR kinases (GRKs), particularly GRK2 and GRK3, have been shown to be important for μ-OR recruitment of β-arrestin and internalization. However, the contribution of GRK2 and GRK3 to β-arrestin recruitment and receptor internalization, remain to be determined in their complete absence. Using CRISPR/Cas9-mediated genome editing we established HEK293 cells with knockout of GRK2, GRK3 or both to dissect their individual contributions in β-arrestin2 recruitment and μ-OR internalization upon stimulation with four different agonists. We showed that GRK2/3 removal reduced agonist-induced μ-OR internalization and β-arrestin2 recruitment substantially and we found GRK2 to be more important for these processes than GRK3. Furthermore, we observed a sustained and GRK2/3 independent component of β-arrestin2 recruitment to the plasma membrane upon μ-OR activation. Rescue expression experiments restored GRK2/3 functions. Inhibition of GRK2/3 using the small molecule inhibitor CMPD101 showed a high similarity between the genetic and pharmacological approaches, cross-validating the specificity of both. However, off-target effects were observed at high CMPD101 concentrations. These GRK2/3 KO cell lines should prove useful for a wide range of studies on GPCR function.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Thor C. Møller ◽  
Mie F. Pedersen ◽  
Jeffrey R. van Senten ◽  
Sofie D. Seiersen ◽  
Jesper M. Mathiesen ◽  
...  

Abstract Most G protein-coupled receptors (GPCRs) recruit β-arrestins and internalize upon agonist stimulation. For the μ-opioid receptor (μ-OR), this process has been linked to development of opioid tolerance. GPCR kinases (GRKs), particularly GRK2 and GRK3, have been shown to be important for μ-OR recruitment of β-arrestin and internalization. However, the contribution of GRK2 and GRK3 to β-arrestin recruitment and receptor internalization, remain to be determined in their complete absence. Using CRISPR/Cas9-mediated genome editing we established HEK293 cells with knockout of GRK2, GRK3 or both to dissect their individual contributions in β-arrestin2 recruitment and μ-OR internalization upon stimulation with four different agonists. We showed that GRK2/3 removal reduced agonist-induced μ-OR internalization and β-arrestin2 recruitment substantially and we found GRK2 to be more important for these processes than GRK3. Furthermore, we observed a sustained and GRK2/3 independent component of β-arrestin2 recruitment to the plasma membrane upon μ-OR activation. Rescue expression experiments restored GRK2/3 functions. Inhibition of GRK2/3 using the small molecule inhibitor CMPD101 showed a high similarity between the genetic and pharmacological approaches, cross-validating the specificity of both. However, off-target effects were observed at high CMPD101 concentrations. These GRK2/3 KO cell lines should prove useful for a wide range of studies on GPCR function.


Sign in / Sign up

Export Citation Format

Share Document