scholarly journals Mucins Dynamics in Physiological and Pathological Conditions

2021 ◽  
Vol 22 (24) ◽  
pp. 13642
Author(s):  
Hassan Melhem ◽  
Daniel Regan-Komito ◽  
Jan Hendrik Niess

Maintaining intestinal health requires clear segregation between epithelial cells and luminal microbes. The intestinal mucus layer, produced by goblet cells (GCs), is a key element in maintaining the functional protection of the epithelium. The importance of the gut mucus barrier is highlighted in mice lacking Muc2, the major form of secreted mucins. These mice show closer bacterial residence to epithelial cells, develop spontaneous colitis and became moribund when infected with the attaching and effacing pathogen, Citrobacter rodentium. Furthermore, numerous observations have associated GCs and mucus layer dysfunction to the pathogenesis of inflammatory bowel disease (IBD). However, the molecular mechanisms that regulate the physiology of GCs and the mucus layer remain obscured. In this review, we consider novel findings describing divergent functionality and expression profiles of GCs subtypes within intestinal crypts. We also discuss internal (host) and external (diets and bacteria) factors that modulate different aspects of the mucus layer as well as the contribution of an altered mucus barrier to the onset of IBD.

2021 ◽  
Vol 22 (19) ◽  
pp. 10224
Author(s):  
Samuel Fernández-Tomé ◽  
Lorena Ortega Moreno ◽  
María Chaparro ◽  
Javier P. Gisbert

The gastrointestinal tract is optimized to efficiently absorb nutrients and provide a competent barrier against a variety of lumen environmental compounds. Different regulatory mechanisms jointly collaborate to maintain intestinal homeostasis, but alterations in these mechanisms lead to a dysfunctional gastrointestinal barrier and are associated to several inflammatory conditions usually found in chronic pathologies such as inflammatory bowel disease (IBD). The gastrointestinal mucus, mostly composed of mucin glycoproteins, covers the epithelium and plays an essential role in digestive and barrier functions. However, its regulation is very dynamic and is still poorly understood. This review presents some aspects concerning the role of mucus in gut health and its alterations in IBD. In addition, the impact of gut microbiota and dietary compounds as environmental factors modulating the mucus layer is addressed. To date, studies have evidenced the impact of the three-way interplay between the microbiome, diet and the mucus layer on the gut barrier, host immune system and IBD. This review emphasizes the need to address current limitations on this topic, especially regarding the design of robust human trials and highlights the potential interest of improving our understanding of the regulation of the intestinal mucus barrier in IBD.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S38-S38
Author(s):  
Melinda Engevik ◽  
Wenly Ruan ◽  
Faith Ihekweazu ◽  
James Versalovic

Abstract Background The intestinal mucus layer serves as a critical interface between the environment and the host. Patients with inflammatory bowel disease (IBD), particularly ulcerative colitis, exhibit reduced synthesis and secretion of the mucus protein MUC2 and decreased mucus thickness. This in turn promotes immune activation and inflammation. The clinical relevance of the mucus layer emphasizes the need to address strategies to modulate this barrier. Although bifidobacteria represent only 3–6% of the healthy adult fecal microbiota, their presence has been associated with numerous health benefits, including bolstering mucus production. However, the molecular mechanisms that underlie these positive effects appear to be strain-specific and are not well defined. We hypothesized that the human-derived Bifidobacterium dentium would increase intestinal mucus synthesis and expulsion via specific metabolites. We also speculated that modulation of goblet cells would be beneficial during colitis. Methods & Results In silico genome analysis revealed that B. dentium lacked the enzymatic repertoire required for degradation of mucin glycans. Consistent with these findings, we found that B. dentium could not use mucin glycans as a primary carbon source in vitro. To examine mucus modulation in vivo, germ-free mice were mono-associated with live or heat-killed B. dentium. Live B. dentium mono-associated mice exhibited increased colonic expression of goblet cell markers Krüppel-Like Factor 4 (Klf4), Relmβ, trefoil factor 3 (Tff3), Muc2, and several mucin glycosyltransferases compared to both heat-killed B. dentium and germ-free counterparts. Likewise, live B. dentium mono-associated colon had increased acidic mucin-filled goblet cells as denoted by MUC2 and PAS-AB staining. In vitro, B. dentium secreted products, including acetate, were able to increase MUC2 levels in T84 cells, mouse colonoids and human colonoids. We also identified that B. dentium secreted products, such as GABA, stimulated autophagy-mediated calcium signaling and MUC2 release. To identify whether B. dentium could enhance MUC2 production in mice harboring a complete microbiota, specific pathogen free mice were treated with live B. dentium by oral gavage. Administration of B. dentium increased the inner mucus layer compared to controls. Moreover, in a TNBS model of colitis, B. dentium treated mice had increased goblet cell numbers and MUC2 mRNA. Mirroring these findings, B. dentium treated mice lost less weight, had improved histology and had decreased levels of TNF, KC (IL-8), and IL-6. Conclusions This work illustrates that B. dentium enhances the intestinal mucus layer and goblet cell function via upregulation of gene expression and autophagy signaling pathways with a net increase in mucin production. Ultimately, these pathways may be targeted for the development of novel therapeutics.


1999 ◽  
Vol 117 (5) ◽  
pp. 1089-1097 ◽  
Author(s):  
Constance Schultsz ◽  
Frank M. van den Berg ◽  
Fiebo W. ten Kate ◽  
Guido N.J. Tytgat ◽  
Jacob Dankert

2018 ◽  
Vol 62 (4) ◽  
pp. 48-55
Author(s):  
R. Szabóová ◽  
Z. Faixová ◽  
Z. Maková ◽  
E. Piešová

Abstract The mucus layer of the intestinal tract plays an important role of forming the front line of innate host defense. Recent studies have suggested that the involvement of feeding natural additives on protection/prevention/promotion of mucus production in the intestinal environment is beneficial. The goblet cells continually produce mucins for the retention of the mucus barrier under physiological conditions, but different factors (e. g. microorganisms, microbial toxins, viruses, cytokines, and enzymes) can have profound effects on the integrity of the intestinal epithelium covered by a protective mucus. The intestinal mucus forms enterocytes covered by transmembrane mucins and goblet cells produce by the secreted gel-forming mucins (MUC2). The mucus is organized in a single unattached mucus layer in the small intestine and in two mucus layers (inner, outer) in the colon. The main part of the review evaluates the effects of natural additives/substances supplementation to stimulate increased expression of MUC2 mucin in the intestine of animals.


2014 ◽  
Vol 307 (4) ◽  
pp. G420-G429 ◽  
Author(s):  
Stéphanie Da Silva ◽  
Catherine Robbe-Masselot ◽  
Afifa Ait-Belgnaoui ◽  
Alessandro Mancuso ◽  
Myriam Mercade-Loubière ◽  
...  

Despite well-known intestinal epithelial barrier impairment and visceral hypersensitivity in irritable bowel syndrome (IBS) patients and IBS-like models, structural and physical changes in the mucus layer remain poorly understood. Using a water avoidance stress (WAS) model, we aimed at evaluating whether 1) WAS modified gut permeability, visceral sensitivity, mucin expression, biochemical structure of O-glycans, and related mucus physical properties, and 2) whether Lactobacillus farciminis treatment prevented these alterations. Wistar rats received orally L. farciminis or vehicle for 14 days; at day 10, they were submitted to either sham or 4-day WAS. Intestinal paracellular permeability and visceral sensitivity were measured in vivo. The number of goblet cells and Muc2 expression were evaluated by histology and immunohistochemistry, respectively. Mucosal adhesion of L. farciminis was determined ex situ. The mucin O-glycosylation profile was obtained by mass spectrometry. Surface imaging of intestinal mucus was performed at nanoscale by atomic force microscopy. WAS induced gut hyperpermeability and visceral hypersensitivity but did not modify either the number of intestinal goblet cells or Muc2 expression. In contrast, O-glycosylation of mucins was strongly affected, with the appearance of elongated polylactosaminic chain containing O-glycan structures, associated with flattening and loss of the mucus layer cohesive properties. L. farciminis bound to intestinal Muc2 and prevented WAS-induced functional alterations and changes in mucin O-glycosylation and mucus physical properties. WAS-induced functional changes were associated with mucus alterations resulting from a shift in O-glycosylation rather than from changes in mucin expression. L. farciminis treatment prevented these alterations, conferring epithelial and mucus barrier strengthening.


Science ◽  
2021 ◽  
Vol 372 (6539) ◽  
pp. eabb1590
Author(s):  
Elisabeth E. L. Nyström ◽  
Beatriz Martinez-Abad ◽  
Liisa Arike ◽  
George M. H. Birchenough ◽  
Eric B. Nonnecke ◽  
...  

The intestinal mucus layer, an important element of epithelial protection, is produced by goblet cells. Intestinal goblet cells are assumed to be a homogeneous cell type. In this study, however, we delineated their specific gene and protein expression profiles and identified several distinct goblet cell populations that form two differentiation trajectories. One distinct subtype, the intercrypt goblet cells (icGCs), located at the colonic luminal surface, produced mucus with properties that differed from the mucus secreted by crypt-residing goblet cells. Mice with defective icGCs had increased sensitivity to chemically induced colitis and manifested spontaneous colitis with age. Furthermore, alterations in mucus and reduced numbers of icGCs were observed in patients with both active and remissive ulcerative colitis, which highlights the importance of icGCs in maintaining functional protection of the epithelium.


Sign in / Sign up

Export Citation Format

Share Document