scholarly journals Dual-Functional Peroxidase-Copper Phosphate Hybrid Nanoflowers for Sensitive Detection of Biological Thiols

2021 ◽  
Vol 23 (1) ◽  
pp. 366
Author(s):  
Xuan Ai Le ◽  
Thao Nguyen Le ◽  
Moon Il Kim

An effective strategy to detect biological thiols (biothiols), including glutathione (GSH), cysteine (Cys), and homocysteine (Hcy), holds significant incentive since they play vital roles in many cellular processes and are closely related to many diseases. Here, we demonstrated that hybrid nanoflowers composed of crystalline copper phosphate and horseradish peroxidase (HRP) served as a functional unit exhibiting dual catalytic activities of biothiol oxidase and HRP, yielding a cascade reaction system for a sensitive one-pot fluorescent detection of biothiols. The nanoflowers were synthesized through the anisotropic growth of copper phosphate petals coordinated with the amine/amide moieties of HRP, by simply incubating HRP and copper(II) sulfate for three days at room temperature. Copper phosphates within the nanoflowers oxidized target biothiols to generate H2O2, which activated the entrapped HRP to oxidize the employed Amplex UltraRed substrate to produce intense fluorescence. Using this strategy, biothiols were selectively and sensitively detected by monitoring the respective fluorescence intensity. This nanoflower-based strategy was also successfully employed for reliable quantification of biothiols present in human serum, demonstrating its great potential for clinical diagnostics.

2019 ◽  
Vol 48 (43) ◽  
pp. 16350-16357 ◽  
Author(s):  
Wanli Zhou ◽  
Ping Liu ◽  
Yanping Zheng ◽  
Xuekun Liu ◽  
Yong Zhang ◽  
...  

Four new isopolymolybdates-based organic–inorganic hybrids decorated with Cu-pyridyl complexes were prepared by using one-pot methods. Compounds 1–4 display discrepant dual-functional electro-catalytic activities toward reduction of nitrite and oxidation of ascorbic acid.


2015 ◽  
Vol 5 (3) ◽  
pp. 1840-1846 ◽  
Author(s):  
Carolina Garcia ◽  
Ivaldo I. Junior ◽  
Rodrigo O. M. A. de Souza ◽  
Rafael Luque

Novel bio-nanohybrids based on room temperature one-pot synthesized lipase-nanoparticle systems were developed and characterized in this work, with subsequent investigations of their catalytic activities and stability as compared to the free enzymes.


CrystEngComm ◽  
2020 ◽  
Vol 22 (15) ◽  
pp. 2642-2648 ◽  
Author(s):  
Ming-Yu Dou ◽  
Xian-Qiang Huang ◽  
Guo-Yu Yang

Two silver-polyoxometalates [Ag3L2(DMSO)2][PW12O40]·4DMSO (1) and [(Ag2L2)2][SiW12O40]·10DMSO·2H2O (2) are made and 1 shows good catalytic activities for three-component coupling reaction.


2019 ◽  
Vol 48 (8) ◽  
pp. 2598-2605 ◽  
Author(s):  
Wanli Zhou ◽  
Yanping Zheng ◽  
Gang Yuan ◽  
Jun Peng

Three new polyoxometalates-based organic–inorganic hybrids decorated with Cu–terpyridine complexes were prepared by using one-pot methods. Compounds 1–3 demonstrate discrepant dual functional electro-catalytic activities toward reduction of nitrite and oxidation of ascorbic acid.


2019 ◽  
Vol 44 (1-2) ◽  
pp. 20-24 ◽  
Author(s):  
Narjes Basirat ◽  
Seyed Sajad Sajadikhah ◽  
Abdolkarim Zare

N,N,N’, N’-tetramethyl- N,N’-bis(sulfo)ethane-1,2-diaminium mesylate ([TMBSED][OMs]2) was employed for the synthesis of piperidines and dihydropyrrol-2-ones via one-pot multi-component reactions in simple and green processes. This pseudo five-component reaction of aromatic aldehydes, anilines and alkyl acetoacetates was carried out under reflux conditions in ethanol to afford substituted piperidines. Also, dihydropyrrol-2-one derivatives were synthesized by means of four-component reactions of various amines, dialkyl acetylenedicarboxylates and formaldehyde in ethanol at room temperature. The present approaches have several advantages such as good yields, easy work-ups, short reaction times, and utilize mild and clean reaction conditions.


2020 ◽  
Author(s):  
Kun Yin ◽  
Xiong Ding ◽  
Ziyue Li ◽  
Hui Zhao ◽  
Kumarasen Cooper ◽  
...  

AbstractRecently, CRISPR-Cas technology has opened a new era of nucleic acid-based molecular diagnostics. However, current CRISPR-Cas-based nucleic acid biosensing has largely a lack of the quantitative detection ability and typically requires separate manual operations. Herein, we reported a dynamic aqueous multiphase reaction (DAMR) system for simple, sensitive and quantitative one-pot CRISPR-Cas12a based molecular diagnosis by taking advantage of density difference of sucrose concentration. In the DAMR system, recombinase polymerase amplification (RPA) and CRISPR-Cas12a derived fluorescent detection occurred in spatially separated but connected aqueous phases. Our DAMR system was utilized to quantitatively detect human papillomavirus (HPV) 16 and 18 DNAs with sensitivities of 10 and 100 copies within less than one hour. Multiplex detection of HPV16/18 in clinical human swab samples were successfully achieved in the DAMR system using 3D-printed microfluidic device. Furthermore, we demonstrated that target DNA in real human plasma samples can be directly amplified and detected in the DAMR system without complicated sample pre-treatment. As demonstrated, the DAMR system has shown great potential for development of next-generation point-of-care molecular diagnostics.


2020 ◽  
Author(s):  
Lucas A. Freeman ◽  
Akachukwu D. Obi ◽  
Haleigh R. Machost ◽  
Andrew Molino ◽  
Asa W. Nichols ◽  
...  

The reduction of the relatively inert carbon–oxygen bonds of CO<sub>2</sub> to access useful CO<sub>2</sub>-derived organic products is one of the most important fundamental challenges in synthetic chemistry. Facilitating this bond-cleavage using earth-abundant, non-toxic main group elements (MGEs) is especially arduous because of the difficulty in achieving strong inner-sphere interactions between CO<sub>2</sub> and the MGE. Herein we report the first successful chemical reduction of CO<sub>2</sub> at room temperature by alkali metals, promoted by a cyclic(alkyl)(amino) carbene (CAAC). One-electron reduction of CAAC-CO<sub>2</sub> adduct (<b>1</b>) with lithium, sodium or potassium metal yields stable monoanionic radicals clusters [M(CAAC–CO<sub>2</sub>)]<sub>n</sub>(M = Li, Na, K, <b> 2</b>-<b>4</b>) and two-electron alkali metal reduction affords open-shell, dianionic clusters of the general formula [M<sub>2</sub>(CAAC–CO<sub>2</sub>)]<sub>n </sub>(<b>5</b>-<b>8</b>). It is notable that these crystalline clusters of reduced CO<sub>2</sub> may also be isolated via the “one-pot” reaction of free CO<sub>2</sub> with free CAAC followed by the addition of alkali metals – a reductive process which does not occur in the absence of carbene. Each of the products <b>2</b>-<b>8</b> were investigated using a combination of experimental and theoretical methods.<br>


2018 ◽  
Author(s):  
Huong T. D. Nguyen ◽  
Y B. N. Tran ◽  
Hung N. Nguyen ◽  
Tranh C. Nguyen ◽  
Felipe Gándara ◽  
...  

<p>Three novel lanthanide metal˗organic frameworks (Ln-MOFs), namely MOF-590, -591, and -592 were constructed from a naphthalene diimide tetracarboxylic acid. Gas adsorption measurements of MOF-591 and -592 revealed good adsorption of CO<sub>2</sub> (low pressure, at room temperature) and moderate CO<sub>2</sub> selectivity over N<sub>2</sub> and CH<sub>4</sub>. Accordingly, breakthrough measurements were performed on a representative MOF-592, in which the separation of CO<sub>2</sub> from binary mixture containing N<sub>2</sub> and CO<sub>2</sub> was demonstrated without any loss in performance over three consecutive cycles. Moreover, MOF-590, MOF-591, and MOF-592 exhibited catalytic activity in the one-pot synthesis of styrene carbonate from styrene and CO<sub>2</sub> under mild conditions (1 atm CO<sub>2</sub>, 80 °C, and solvent-free). Among the new materials, MOF-590 revealed a remarkable efficiency with exceptional conversion (96%), selectivity (95%), and yield (91%). </p><br>


2020 ◽  
Vol 24 (4) ◽  
pp. 465-471 ◽  
Author(s):  
Zita Rádai ◽  
Réka Szabó ◽  
Áron Szigetvári ◽  
Nóra Zsuzsa Kiss ◽  
Zoltán Mucsi ◽  
...  

The phospha-Brook rearrangement of dialkyl 1-aryl-1-hydroxymethylphosphonates (HPs) to the corresponding benzyl phosphates (BPs) has been elaborated under solid-liquid phase transfer catalytic conditions. The best procedure involved the use of triethylbenzylammonium chloride as the catalyst and Cs2CO3 as the base in acetonitrile as the solvent at room temperature. The substrate dependence of the rearrangement has been studied, and the mechanism of the transformation under discussion was explored by quantum chemical calculations. The key intermediate is an oxaphosphirane. The one-pot version starting with the Pudovik reaction has also been developed. The conditions of this tandem transformation were the same, as those for the one-step HP→BP conversion.


2018 ◽  
Vol 15 (3) ◽  
pp. 380-387
Author(s):  
Xia Zhao ◽  
Xiaoyu Lu ◽  
Lipeng Zhang ◽  
Tianjiao Li ◽  
Kui Lu

Aim and Objective: Pyrazolone sulfones have been reported to exhibit herbicidal and antibacterial activities. In spite of their good bioactivities, only a few methods have been developed to prepare pyrazolone sulfones. However, the substrate scope of these methods is limited. Moreover, the direct sulfonylation of pyrazolone by aryl sulfonyl chloride failed to give pyrazolone sulfones. Thus, developing a more efficient method to synthesize pyrazolone sulfones is very important. Materials and Method: Pyrazolone, aryl sulphonyl hydrazide, iodine, p-toluenesulphonic acid and water were mixed in a sealed tube, which was heated to 100°C for 12 hours. The mixture was cooled to 0°C and m-CPBA was added in batches. The mixture was allowed to stir for 30 min at room temperature. The crude product was purified by silica gel column chromatography to afford sulfuryl pyrazolone. Results: In all cases, the sulfenylation products were formed smoothly under the optimized reaction conditions, and were then oxidized to the corresponding sulfones in good yields by 3-chloroperoxybenzoic acid (m-CPBA) in water. Single crystal X-ray analysis of pyrazolone sulfone 4aa showed that the major tautomer of pyrazolone sulfones was the amide form instead of the enol form observed for pyrazolone thioethers. Moreover, the C=N double bond isomerized to form an α,β-unsaturated C=C double bond. Conclusion: An efficient method to synthesize pyrazolone thioethers by iodine-catalyzed sulfenylation of pyrazolones with aryl sulfonyl hydrazides in water was developed. Moreover, this method was employed to synthesize pyrazolone sulfones in one-pot by subsequent sulfenylation and oxidation reactions.


Sign in / Sign up

Export Citation Format

Share Document