scholarly journals Current Status of the Instructional Cues Provided by Notochordal Cells in Novel Disc Repair Strategies

2021 ◽  
Vol 23 (1) ◽  
pp. 427
Author(s):  
Ajay Matta ◽  
William Mark Erwin

Numerous publications over the past 22 years, beginning with a seminal paper by Aguiar et al., have demonstrated the ability of notochordal cell-secreted factors to confer anabolic effects upon intervertebral disc (IVD) cells. Since this seminal paper, other scientific publications have demonstrated that notochordal cells secrete soluble factors that can induce anti-inflammatory, pro-anabolic and anti-cell death effects upon IVD nucleus pulposus (NP) cells in vitro and in vivo, direct human bone marrow-derived mesenchymal stem cells toward an IVD NP-like phenotype and repel neurite ingrowth. More recently these factors have been characterized, identified, and used therapeutically to induce repair upon injured IVDs in small and large pre-clinical animal models. Further, notochordal cell-rich IVD NPs maintain a stable, healthy extracellular matrix whereas notochordal cell-deficient IVDs result in a biomechanically and extracellular matrix defective phenotype. Collectively this accumulating body of evidence indicates that the notochordal cell, the cellular originator of the intervertebral disc holds vital instructional cues to establish, maintain and possibly regenerate the intervertebral disc.

2009 ◽  
Vol 10 (6) ◽  
pp. 513-521 ◽  
Author(s):  
W. Mark Erwin ◽  
Facundo Las Heras ◽  
Diana Islam ◽  
Michael G. Fehlings ◽  
Robert D. Inman

Object The intervertebral disc (IVD) is a highly avascular structure that is occupied by highly specialized cells (nucleus pulposus [NP] cells) that have adapted to survive within an O2 concentration of 2–5%. The object of this study was to investigate the effects of long-term hypoxic and normoxic tissue cultures of nonchondrodystrophic canine notochordal cells—cells that appear to protect the disc NP from degenerative change. Methods The authors obtained notochordal cells from nonchondrodystrophic canines according to their established methods and placed them into monolayer and 3D culture using sodium alginate globules under either hypoxic (3.5% O2) or normoxic (21% O2) conditions. Histological, immunohistochemical, scanning electron microscopy, and histomorphometric methods were used to evaluate the cells within the globules after 5 months in culture. Results Notochordal cells under in vitro hypoxic tissue culture conditions produced a highly complex, organized, 3D cellular construct that was strikingly similar to that observed in vivo. In contrast, traditional normoxic tissue culture conditions resulted in notochordal cells that failed to produce an organized matrix. Hypoxia resulted in a matrix rich in aggrecan and collagen II, whereas normoxic cultured cells did not produce any observable aggrecan or collagen II after 5 months of culture. Conclusions Hypoxia induces notochordal cells to organize a complex 3D cellular/extracellular matrix without an external scaffold other than suspension within sodium alginate. These cells produce an extracellular matrix and large construct that shares exactly the same characteristics as the in vivo condition—robust aggrecan, and type II collagen production. Normoxic tissue culture conditions, however, lead to a failure of these cells to thrive and a lack of extracellular matrix production and significantly smaller cells. The authors suggest that future studies of NP cells and, in particular, notochordal cells should utilize hypoxic tissue culture conditions to derive meaningful, biologically relevant conclusions concerning possible biological/molecular interventions.


2020 ◽  
Vol 11 (12) ◽  
pp. 10864-10875
Author(s):  
Zhenxuan Shao ◽  
Jiajie Lu ◽  
Chenxi Zhang ◽  
Guoling Zeng ◽  
Boda Chen ◽  
...  

Stachydrine ameliorates inflammatory responses and extracellular matrix degradation, via the PI3K/Akt/NF-κB signalling pathway in the progression of intervertebral disc degeneration.


1997 ◽  
Vol 77 (05) ◽  
pp. 0975-0980 ◽  
Author(s):  
Angel Gálvez ◽  
Goretti Gómez-Ortiz ◽  
Maribel Díaz-Ricart ◽  
Ginés Escolar ◽  
Rogelio González-Sarmiento ◽  
...  

SummaryThe effect of desmopressin (DDAVP) on thrombogenicity, expression of tissue factor and procoagulant activity (PCA) of extracellular matrix (ECM) generated by human umbilical vein endothelial cells cultures (HUVEC), was studied under different experimental conditions. HUVEC were incubated with DDAVP (1, 5 and 30 ng/ml) and then detached from their ECM. The reactivity towards platelets of this ECM was tested in a perfusion system. Coverslips covered with DD A VP-treated ECMs were inserted in a parallel-plate chamber and exposed to normal blood anticoagulated with low molecular weight heparin (Fragmin®, 20 U/ml). Perfusions were run for 5 min at a shear rate of 800 s1. Deposition of platelets on ECMs was significantly increased with respect to control ECMs when DDAVP was used at 5 and 30 ng/ml (p <0.05 and p <0.01 respectively). The increase in platelet deposition was prevented by incubation of ECMs with an antibody against human tissue factor prior to perfusion. Immunofluorescence studies positively detected tissue factor antigen on DDAVP derived ECMs. A chromogenic assay performed under standardized conditions revealed a statistically significant increase in the procoagulant activity of the ECMs produced by ECs incubated with 30 ng/ml DDAVP (p <0.01 vs. control samples). Northern blot analysis revealed increased levels of tissue factor mRNA in extracts from ECs exposed to DDAVP. Our data indicate that DDAVP in vitro enhances platelet adhesion to the ECMs through increased expression of tissue factor. A similar increase in the expression of tissue factor might contribute to the in vivo hemostatic effect of DDAVP.


2020 ◽  
Vol 21 ◽  
Author(s):  
Boniface Pone ◽  
Ferreira Igne Elizabeth

: Neglected tropical diseases (NTDs) are responsible for over 500,000 deaths annually and are characterized by multiple disabilities. Leishmaniasis and Chagas disease are among the most severe NTDs, and are caused by the Leishmania sp, and Trypanosoma cruzi, respectively. Glucantime, pentamidine and miltefosine are commonly used to treat leishmaniasis, whereas nifurtimox, benznidazole are current treatments for Chagas disease. However, these treatments are associated with drug resistance, and severe side effects. Hence, the development of synthetic products, especially those containing N02, F, or Cl, which chemical groups are known to improve the biological activity. The present work summarizes the information on the antileishmanial and antitrypanosomal activity of nitro-, chloro-, and fluoro-synthetic derivatives. Scientific publications referring to halogenated derivatives in relation to antileishmanial and antitrypanosomal activities were hand searched in databases such as SciFinder, Wiley, Science Direct, PubMed, ACS, Springer, Scielo, and so on. According to the literature information, more than 90 compounds were predicted as lead molecules with reference to their IC50/EC50 values in in vitro studies. It is worth to mention that only active compounds with known cytotoxic effects against mammalian cells were considered in the present study. The observed activity was attributed to the presence of nitro-, fluoro- and chloro-groups in the compound backbone. All in all, nitro and h0alogenated derivatives are active antileishmanial and antitrypanosomal compounds and can serve as baseline for the development of new drugs against leishmaniasis and Chagas disease. However, efforts on in vitro and in vivo toxicity studies of the active synthetic compounds is still needed. Pharmacokinetic studies, and the mechanism of action of the promising compounds need to be explored. The use of new catalysts and chemical transformation can afford unexplored halogenated compounds with improved antileishmanial and antitrypanosomal activity.


2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


2018 ◽  
Vol 18 (6) ◽  
pp. 769-775 ◽  
Author(s):  
Dayun Yan ◽  
Jonathan H. Sherman ◽  
Michael Keidar

Background: Over the past five years, the cold atmospheric plasma-activated solutions (PAS) have shown their promissing application in cancer treatment. Similar as the common direct cold plasma treatment, PAS shows a selective anti-cancer capacity in vitro and in vivo. However, different from the direct cold atmospheric plasma (CAP) treatment, PAS can be stored for a long time and can be used without dependence on a CAP device. The research on PAS is gradually becoming a hot topic in plasma medicine. Objectives: In this review, we gave a concise but comprehensive summary on key topics about PAS including the development, current status, as well as the main conclusions about the anti-cancer mechanism achieved in past years. The approaches to make strong and stable PAS are also summarized.


Sign in / Sign up

Export Citation Format

Share Document