scholarly journals Reduced DNAJC3 Expression Affects Protein Translocation across the ER Membrane and Attenuates the Down-Modulating Effect of the Translocation Inhibitor Cyclotriazadisulfonamide

2022 ◽  
Vol 23 (2) ◽  
pp. 584
Author(s):  
Eva Pauwels ◽  
Becky Provinciael ◽  
Anita Camps ◽  
Enno Hartmann ◽  
Kurt Vermeire

One of the reported substrates for the endoplasmic reticulum (ER) translocation inhibitor cyclotriazadisulfonamide (CADA) is DNAJC3, a chaperone of the unfolded protein response during ER stress. In this study, we investigated the impact of altered DNAJC3 protein levels on the inhibitory activity of CADA. By comparing WT DNAJC3 with a CADA-resistant DNAJC3 mutant, we observed the enhanced sensitivity of human CD4, PTK7 and ERLEC1 for CADA when DNAJC3 was expressed at high levels. Combined treatment of CADA with a proteasome inhibitor resulted in synergistic inhibition of protein translocation and in the rescue of a small preprotein fraction, which presumably corresponds to the CADA affected protein fraction that is stalled at the Sec61 translocon. We demonstrate that DNAJC3 enhances the protein translation of a reporter protein that is expressed downstream of the CADA-stalled substrate, suggesting that DNAJC3 promotes the clearance of the clogged translocon. We propose a model in which a reduced DNAJC3 level by CADA slows down the clearance of CADA-stalled substrates. This results in higher residual translocation into the ER lumen due to the longer dwelling time of the temporarily stalled substrates in the translocon. Thus, by directly reducing DNAJC3 protein levels, CADA attenuates its net down-modulating effect on its substrates.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Joseph W. Brewer ◽  
Suzanne Jackowski

The unfolded protein response (UPR) can coordinate the regulation of gene transcription and protein translation to balance the load of client proteins with the protein folding and degradative capacities of the ER. Increasing evidence also implicates the UPR in the regulation of lipid synthesis and membrane biogenesis. The differentiation of B lymphocytes into antibody-secreting cells is marked by significant expansion of the ER, the site for antibody synthesis and assembly. In activated B cells, the demand for membrane protein and lipid components leads to activation of the UPR transcriptional activator XBP1(S) which, in turn, initiates a cascade of biochemical events that enhance supplies of phospholipid precursors and build machinery for the synthesis, maturation, and transport of secretory proteins. The alterations in lipid metabolism that occur during this developmental transition and the impact of membrane phospholipid restriction on B cell secretory characteristics are discussed in this paper.


1998 ◽  
Vol 143 (4) ◽  
pp. 921-933 ◽  
Author(s):  
Susana Silberstein ◽  
Gabriel Schlenstedt ◽  
Pam A. Silver ◽  
Reid Gilmore

Members of the eukaryotic heat shock protein 70 family (Hsp70s) are regulated by protein cofactors that contain domains homologous to bacterial DnaJ. Of the three DnaJ homologues in the yeast rough endoplasmic reticulum (RER; Scj1p, Sec63p, and Jem1p), Scj1p is most closely related to DnaJ, hence it is a probable cofactor for Kar2p, the major Hsp70 in the yeast RER. However, the physiological role of Scj1p has remained obscure due to the lack of an obvious defect in Kar2p-mediated pathways in scj1 null mutants. Here, we show that the Δscj1 mutant is hypersensitive to tunicamycin or mutations that reduce N-linked glycosylation of proteins. Although maturation of glycosylated carboxypeptidase Y occurs with wild-type kinetics in Δscj1 cells, the transport rate for an unglycosylated mutant carboxypeptidase Y (CPY) is markedly reduced. Loss of Scj1p induces the unfolded protein response pathway, and results in a cell wall defect when combined with an oligosaccharyltransferase mutation. The combined loss of both Scj1p and Jem1p exaggerates the sensitivity to hypoglycosylation stress, leads to further induction of the unfolded protein response pathway, and drastically delays maturation of an unglycosylated reporter protein in the RER. We propose that the major role for Scj1p is to cooperate with Kar2p to mediate maturation of proteins in the RER lumen.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eun-Jin Lee ◽  
Priscilla Chan ◽  
Leon Chea ◽  
Kyle Kim ◽  
Randal J. Kaufman ◽  
...  

AbstractRetinitis Pigmentosa (RP) is a blinding disease that arises from loss of rods and subsequently cones. The P23H rhodopsin knock-in (P23H-KI) mouse develops retinal degeneration that mirrors RP phenotype in patients carrying the orthologous variant. Previously, we found that the P23H rhodopsin protein was degraded in P23H-KI retinas, and the Unfolded Protein Response (UPR) promoted P23H rhodopsin degradation in heterologous cells in vitro. Here, we investigated the role of a UPR regulator gene, activating transcription factor 6 (Atf6), in rhodopsin protein homeostasis in heterozygous P23H rhodopsin (Rho+/P23H) mice. Significantly increased rhodopsin protein levels were found in Atf6−/−Rho+/P23H retinas compared to Atf6+/−Rho+/P23H retinas at early ages (~ P12), while rhodopsin mRNA levels were not different. The IRE1 pathway of the UPR was hyper-activated in young Atf6−/−Rho+/P23H retinas, and photoreceptor layer thickness was unchanged at this early age in Rho+/P23H mice lacking Atf6. By contrast, older Atf6−/−Rho+/P23H mice developed significantly increased retinal degeneration in comparison to Atf6+/−Rho+/P23H mice in all retinal layers, accompanied by reduced rhodopsin protein levels. Our findings demonstrate that Atf6 is required for efficient clearance of rhodopsin protein in rod photoreceptors expressing P23H rhodopsin, and that loss of Atf6 ultimately accelerates retinal degeneration in P23H-KI mice.


2011 ◽  
Vol 225 (2) ◽  
pp. 276-284 ◽  
Author(s):  
Caroline M Hodin ◽  
Froukje J Verdam ◽  
Joep Grootjans ◽  
Sander S Rensen ◽  
Fons K Verheyen ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 631 ◽  
Author(s):  
Celia Limia ◽  
Chloé Sauzay ◽  
Hery Urra ◽  
Claudio Hetz ◽  
Eric Chevet ◽  
...  

Endoplasmic reticulum (ER) proteostasis is often altered in tumor cells due to intrinsic (oncogene expression, aneuploidy) and extrinsic (environmental) challenges. ER stress triggers the activation of an adaptive response named the Unfolded Protein Response (UPR), leading to protein translation repression, and to the improvement of ER protein folding and clearance capacity. The UPR is emerging as a key player in malignant transformation and tumor growth, impacting on most hallmarks of cancer. As such, the UPR can influence cancer cells’ migration and invasion properties. In this review, we overview the involvement of the UPR in cancer progression. We discuss its cross-talks with the cell migration and invasion machinery. Specific aspects will be covered including extracellular matrix (ECM) remodeling, modification of cell adhesion, chemo-attraction, epithelial-mesenchymal transition (EMT), modulation of signaling pathways associated with cell mobility, and cytoskeleton remodeling. The therapeutic potential of targeting the UPR to treat cancer will also be considered with specific emphasis in the impact on metastasis and tissue invasion.


2017 ◽  
Vol 312 (5) ◽  
pp. C583-C594 ◽  
Author(s):  
Zahra S. Mesbah Moosavi ◽  
David A. Hood

Mitochondria comprise both nuclear and mitochondrially encoded proteins requiring precise stoichiometry for their integration into functional complexes. The augmented protein synthesis associated with mitochondrial biogenesis results in the accumulation of unfolded proteins, thus triggering cellular stress. As such, the unfolded protein responses emanating from the endoplasmic reticulum (UPRER) or the mitochondrion (UPRMT) are triggered to ensure correct protein handling. Whether this response is necessary for mitochondrial adaptations is unknown. Two models of mitochondrial biogenesis were used: muscle differentiation and chronic contractile activity (CCA) in murine muscle cells. After 4 days of differentiation, our findings depict selective activation of the UPRMTin which chaperones decreased; however, Sirt3 and UPRERmarkers were elevated. To delineate the role of ER stress in mitochondrial adaptations, the ER stress inhibitor TUDCA was administered. Surprisingly, mitochondrial markers COX-I, COX-IV, and PGC-1α protein levels were augmented up to 1.5-fold above that of vehicle-treated cells. Similar results were obtained in myotubes undergoing CCA, in which biogenesis was enhanced by ~2–3-fold, along with elevated UPRMTmarkers Sirt3 and CPN10. To verify whether the findings were attributable to the terminal UPRERbranch directed by the transcription factor CHOP, cells were transfected with CHOP siRNA. Basally, COX-I levels increased (~20%) and COX-IV decreased (~30%), suggesting that CHOP influences mitochondrial composition. This effect was fully restored by CCA. Therefore, our results suggest that mitochondrial biogenesis is independent of the terminal UPRER. Under basal conditions, CHOP is required for the maintenance of mitochondrial composition, but not for differentiation- or CCA-induced mitochondrial biogenesis.


Sign in / Sign up

Export Citation Format

Share Document