scholarly journals Aerodynamic and Aeroelastic Effects of Design-Based Geometry Variations on a Low-Pressure Compressor

Author(s):  
Torben Eggers ◽  
Hye Rim Kim ◽  
Simon Bittner ◽  
Jens Friedrichs ◽  
Joerg R. Seume

In modern aircraft engines, the low-pressure compressor (LPC) is subjected to a flow characterized by strong wakes and secondary flows from the upstream fan. This concerns ultra-high bypass ratio (UHBR) turbofan engines, in particular. This paper presents the aerodynamic and aeroelastic sensitivities of parametric variations on the LPC, driven by the design considerations in the upstream fan. The goal of this investigation was to determine the influence of design-based geometry parameter variations on the LPC performance under realistic inlet flow distributions and the presence of an s-duct. Aerodynamic simulations are conducted at the design and off-design operating points with the fan outflow as the inlet boundary conditions. Based on the aerodynamic results, time-linearized unsteady simulations are conducted to evaluate the vibration amplitude at the resonance operating points. First, the bypass ratio is varied by reducing the channel height of the LPC. The LPC efficiency decreases by up to 1.7% due to the increase in blockage of the core flow. The forced response amplitude of the rotor decreases with increasing bypass ratio due to increased aerodynamic damping. Secondly, the fan cavity leakage flow is considered as it directly affects the near hub fan flow and thus the inflow of the LPC. This results in an increased total-pressure loss for the s-duct due to mixing losses. The additional mixing redistributes the flow at the s-duct exit leading to a total-pressure loss reduction of 4.3% in the first rotor at design point. This effect is altered at off-design conditions. The vibration amplitude at low speed resonance points is increased by 19% for the first torsion and 26% for second bending. Thirdly, sweep and lean are applied to the inlet guide vane (IGV) upstream of the LPC. Despite the s-duct and the variable inlet guide vane (VIGV) affecting the flow, the three-dimensional blade design achieves aerodynamic and aeroelastic improvements of rotor 1 at off-design. The total-pressure loss reduces by up to 18% and the resonance amplitude more than 10%. Only negligible improvements for rotor 1 are present at the design point. In a fourth step, the influence of axial gap size between the stator and the rotor rows in the LPC is examined in the range of small variations which shows no distinct aerodynamic and aeroelastic sensitivities. This finding not only supports previous studies, but it also suggests a correlation between mode shapes and locally increased excitaion with increasing axial gap size. As a result, potential design improvements in future fan-compressor design are suggested.

Author(s):  
Stefan Hemmert-Pottmann ◽  
William Gouézou ◽  
Eberhard Nicke

Continuous reduction of fuel consumption for a wide range of operating conditions leads to a high efficiency demand for all engine parts of modern jet engines and especially the compressor. To meet these requirements a two-part Variable Inlet Guide Vane (VIGV), composed of a fixed strut and a variable flap, can be used. Besides the aerodynamic aspects, the VIGV strut is a substantial part for the structural integrity of the compressor. The aerodynamic design optimization of such a VIGV, located upstream of the first rotor of a 2.5 stage low pressure compressor, under the conditions of three different operating points is presented in this paper. In a previous study the shape of the axial gap between strut and flap was optimized without changing the envelope of both parts [1]. The new design tool SplitBlade, developed at the DLR, enables the creation of an axial gap and has been integrated in the design process of the in-house optimization tool AutoOpti. The target of the optimization was to decrease the total pressure loss coefficients for all three operating points. The design optimization presented in this paper is more complex by allowing the VIGV blade geometry to change. The basic dimensions of the VIGV such as the axial chord and the maximum profile thickness are still frozen. In total, 88 parameters are free to change in the optimization process. Additionally to the main target of loss reduction, the circumferential outflow angles are restricted to maintain the deflection of the blade and therewith the required rotor inflow conditions to ensure the operability of the entire compressor in the whole working range. The final result is a two-part VIGV with an axial gap, which is optimized in terms of total pressure losses in three operating points. Compared to a reference geometry without an axial gap, the losses are almost equal at nominal speed, and about one to two percentage points higher in the two part speed operating points.


Author(s):  
David Händel ◽  
Reinhard Niehuis ◽  
Jan Klausmann

On the basis of experimental results the new design of a Variable Inlet Guide Vane (VIGV), as can be used for the control and regulation in multishaft compressors, is presented. Main goal of this investigation is a significant increase of the operating range and a reduction of the total pressure loss compared to a currently used basic design. For both designs 2D-cascades were build for detailed measurements in the High-Speed Cascade Wind Tunnel at the Institute of Jet Propulsion at the Universität der Bundeswehr München. The basic design exhibits a symmetric profile with only one segment. In contrast to that the new VIGV design consists of two symmetric vane segments which are arranged pivotable to each other. This provides the advantage of a symmetric profile for a fully opened VIGV associated with a low-loss level. For guidance of the flow, both vane segments can be rotated. Hence, the turning of the flow is split onto two segments. This avoids a huge flow separation on the suction side for high turning angles (Δβ > 30°) which is linked with a strong and abrupt loss increase. Due to the design, the new VIGV exhibits a gap between the two vane segments. Results with opened and sealed gap are presented and discussed. Using a sealing between the segments, a reduction of the profile loss could be detected for all investigated operating conditions. Even without a sealing in the gap, the “low-loss working range” is significantly increased. In addition, it is depicted that the presented results are valid for varying inflow velocities. This broadens the usability of the outcomes. Concluding, it is shown that all aims are achieved. Using the new VIGV design with sealing the low-loss working range can almost be doubled (Δβ > 55°) and the total pressure loss decreases in every working condition compared to the basic design.


2001 ◽  
Author(s):  
Weili Yang ◽  
Peter Grant ◽  
James Hitt

Abstract Our principle goal of this study is to develop a CFD based analysis procedure that could be used to analyze the geometric tradeoffs in scroll geometry when space is limited. In the study, a full centrifugal compressor stage at four different operating points from near surge to near choke is analyzed using Computational Fluid Dynamics (CFD) and laboratory measurement. The study concentrates on scroll performance and its interaction with a vaneless diffuser and impeller. The numerical results show good agreement with test data in scroll circumferential pressure distribution at different ΛAR, total pressure loss coefficient, and pressure distortion at the tongue. The CFD analysis also predicts a reasonable choke point of the stage. The numerical results provide overall flow field in the scroll and diffuser at different operating points. From examining the flow fields, one can have a much better understanding of rather complicated flow behavior such as jet-wake mixing, and choke. One can examine total pressure loss in detail to provide crucial direction for scroll design improvement in areas such as volute tongue, volute cross-section geometry and exit conical diffuser.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Zhuoxiong Zeng ◽  
Kaifang Guo ◽  
Xue Gong

Numerical calculation was conducted to obtain the optimum structure parameters of the trapped vortex combustor (TVC) with the guide vane and blunt body. The results show that the optimum structure parameters of the guide vane are a/Hf=0.5, b/Li=0.2, and c/L=0.1, and the optimum structure parameters of blunt body are S/L=0.7, L2/L=0.1, and L1/Li=0.25. Then, the influence of different inlet conditions on the combustion turbulence flow was studied. The results show that high inlet temperature and low inlet velocity can effectively reduce total pressure loss; the equivalence ratio has little effect on total pressure loss. The study of unsteady flow shows that double vortices undergo the process of preliminarily forming-breaking down-forming again-being stable gradually.


Author(s):  
Oliver Reutter ◽  
Stefan Hemmert-Pottmann ◽  
Alexander Hergt ◽  
Eberhard Nicke

The following paper deals with the development of an optimized fillet and an endwall contour for reducing the total pressure loss and for homogenizing the outflow of a highly loaded cascade with a low aspect ratio. The NACA-65 K48 cascade profile without a fillet and without endwall contouring is used as a basis. Optimizations are performed using the DLR in-house tool AutoOpti and the RANS-solver TRACE. Three operating points at an inflow Mach number of 0.67 with different inflow angles are used to secure a wide operating range of the optimized design. At first only a fillet is optimized. The optimized fillet is small at the leading edge and rather high, wide and thick towards the trailing edge. It reduces the total pressure loss and homogenizes the outflow up to a blade height of 20 %. Following this a combined optimization of the endwall and the fillet is performed. The optimized contour leads to the development of a vortex, which changes the secondary flow in such a way, that the corner separation is reduced, which in turn significantly reduces the total pressure loss up to 16 % in the design operating point. The contour in the outflow region leads to a significant homogenization of the outflow in the near wall region.


Author(s):  
Majid Asli ◽  
Panagiotis Stathopoulos ◽  
Christian Oliver Paschereit

Abstract Pressure Gain Combustion (PGC) is considered a possible solution to increase gas turbine cycle efficiency, due to the lower entropy generation in the combustion process. However, the highly unsteady flow produced by PGC makes it more difficult to extract work from its exhaust gas. Any outlet restriction downstream of PGC, such as turbine blades, affects its flow field and may cause additional thermodynamic losses. The unsteadiness in the form of pressure, temperature and velocity vector fluctuations has a negative impact on the operation of conventional turbines. Therefore, evaluating early turbine design parameters for such applications is of great interest. Additionally, experimental measurements and data acquisition present researchers with challenges that have to do mostly with the high temperature exhaust of PGC and the high frequency of its operation. Numerical simulations can provide important insights into PGC exhaust flow and its interaction with turbine blades. In this paper, a Rotating Detonation Combustor (RDC) and a row of nozzle guide vanes have been modeled based on the data from literature and an available experimental setup at TU Berlin. Five guide vane configurations with different geometrical parameters have been modeled. URANS simulations were done for all guide vane arrangements to investigate the effect of solidity and blade type representing different outlet restrictions on the RDC exhaust flow. Total pressure loss and velocity fluctuation were computed upstream and downstream of the vanes. The results analzed the connection between total pressure loss and the vanes solidity and thickness to chord ratio. It is observed that more than 57% of the upstream velocity angle fluctuation amplitude was damped by the vanes. Furthermore, the area reduction was found to be the significant driving factor for damping the velocity angle fluctuations, whether in the form of solidity or thickness on chord ratio increment. A further study of the flow field details revealed that the vane passages act as convergent divergent nozzles in the unsteady flow field and no compression wave exists upstream. This RDC exhaust flow investigation is an important primary step from a turbomachinery standpoint, which provided details of blade behavior in such an unsteady flow field.


Author(s):  
Feng-Shan Wang ◽  
Wen-Jun Kong ◽  
Bao-Rui Wang

A research program is in development in China as a demonstrator of combined cooling, heating and power system (CCHP). In this program, a micro gas turbine with net electrical output around 100kW is designed and developed. The combustor is designed for natural gas operation and oil fuel operation, respectively. In this paper, a prototype can combustor for the oil fuel was studied by the experiments. In this paper, the combustor was tested using the ambient pressure combustor test facility. The sensors were equipped to measure the combustion performance; the exhaust gas was sampled and analyzed by a gas analyzer device. From the tests and experiments, combustion efficiency, pattern factor at the exit, the surface temperature profile of the outer liner wall, the total pressure loss factor of the combustion chamber with and without burning, and the pollutants emission fraction at the combustor exit were obtained. It is also found that with increasing of the inlet temperature, the combustion efficiency and the total pressure loss factor increased, while the exit pattern factor coefficient reduced. The emissions of CO and unburned hydrogen carbon (UHC) significantly reduced, but the emission of NOx significantly increased.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jeyakumar Suppandipillai ◽  
Jayaraman Kandasamy ◽  
R. Sivakumar ◽  
Mehmet Karaca ◽  
Karthik K.

Purpose This paper aims to study the influences of hydrogen jet pressure on flow features of a strut-based injector in a scramjet combustor under-reacting cases are numerically investigated in this study. Design/methodology/approach The numerical analysis is carried out using Reynolds Averaged Navier Stokes (RANS) equations with the Shear Stress Transport k-ω turbulence model in contention to comprehend the flow physics during scramjet combustion. The three major parameters such as the shock wave pattern, wall pressures and static temperature across the combustor are validated with the reported experiments. The results comply with the range, indicating the adopted simulation method can be extended for other investigations as well. The supersonic flow characteristics are determined based on the flow properties, combustion efficiency and total pressure loss. Findings The results revealed that the augmentation of hydrogen jet pressure via variation in flame features increases the static pressure in the vicinity of the strut and destabilize the normal shock wave position. Indeed, the pressure of the mainstream flow drives the shock wave toward the upstream direction. The study perceived that once the hydrogen jet pressure is reached 4 bar, the incoming flow attains a subsonic state due to the movement of normal shock wave ahead of the strut. It is noticed that the increase in hydrogen jet pressure in the supersonic flow field improves the jet penetration rate in the lateral direction of the flow and also increases the total pressure loss as compared with the baseline injection pressure condition. Practical implications The outcome of this research provides the influence of fuel injection pressure variations in the supersonic combustion phenomenon of hypersonic vehicles. Originality/value This paper substantiates the effect of increasing hydrogen jet pressure in the reacting supersonic airstream on the performance of a scramjet combustor.


Sign in / Sign up

Export Citation Format

Share Document