scholarly journals Hemipteran Pests of Sugarcane in North America

Insects ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 107 ◽  
Author(s):  
Blake E. Wilson

Piercing-sucking herbivores (Insecta: Hemiptera) represent one of the greatest threats to agricultural production worldwide. Hemipteran pests directly injure plants as well as vector disease-causing plant pathogens. Production of sugarcane (Saccharum spp.) in North America is impacted by a complex of Hemiptera including the sugarcane aphid, Melanaphis sacchari Zehntner (Aphididae); yellow sugarcane aphid, Sipha flava (Forbes) (Aphididae); West Indian canefly, Saccharosydne saccharivora (Westwood) (Delphacidae); sugarcane delphacid, Perkinsiella saccharicida Kirkaldy (Delphacidae); and sugarcane lace bug, Leptodictya tabida (Herric-Schaeffer) (Tingidae). None of these pests is consistently damaging to large amounts of sugarcane acreage, but regional outbreaks are common. The biology, ecology, and pest management of these insects are discussed with emphasis on North America sugarcane production.

2019 ◽  
Vol 64 (1) ◽  
pp. 73-93 ◽  
Author(s):  
Michael J. Brewer ◽  
Frank B. Peairs ◽  
Norman C. Elliott

Aphid invasions of North American cereal crops generally have started with colonization of a new region or crop, followed by range expansion and outbreaks that vary in frequency and scale owing to geographically variable influences. To improve understanding of this process and management, we compare the invasion ecology of and management response to three cereal aphids: sugarcane aphid, Russian wheat aphid, and greenbug. The region exploited is determined primarily by climate and host plant availability. Once an area is permanently or annually colonized, outbreak intensity is also affected by natural enemies and managed inputs, such as aphid-resistant cultivars and insecticides. Over time, increases in natural enemy abundance and diversity, improved compatibility among management tactics, and limited threshold-based insecticide use have likely increased resilience of aphid regulation. Application of pest management foundational practices followed by a focus on compatible strategies are relevant worldwide. Area-wide pest management is most appropriate to large-scale cereal production systems, as exemplified in the Great Plains of North America.


EDIS ◽  
2019 ◽  
Vol 2005 (11) ◽  
Author(s):  
Gregg S. Nuessly

The yellow sugarcane aphid, Sipha flava (Forbes), was described from Illinois by Forbes in 1884. Originally referred to as the 'sorghum aphis' and placed in the genus Chaitophorus (Forbes 1884), it was later moved into the genus Sipha (Davis 1909). Sipha includes 12 species of grass feeders, at least four of which occur in North America north of Mexico. The yellow sugarcane aphid causes damage to sorghum, sugarcane and several species of pasture grass (Median-Gaud et al. 1965, Kindler and Dalrymple 1999). This document is EENY-354, one of a series of the Entomology and Nematology Department, UF/IFAS Extension. Original publication date August 2005. EENY354/IN635: Yellow Sugarcane Aphid, Sipha flava (Forbes) (Insecta: Hemiptera: Aphididae) (ufl.edu)


2021 ◽  
Vol 56 (1) ◽  
pp. 43-52
Author(s):  
Karen Harris-Shultz ◽  
Xinzhi Ni

Abstract Since 2013, the sugarcane aphid, Melanaphis sacchari Zehntner, has been a perennial pest to U.S. sorghum, Sorghum bicolor (L.) Moench, production with yield declines in susceptible hybrids ranging from 50 to 100%. Previous studies have found that a single clonal genotype predominates in samples collected from sugarcane (Saccharum spp.), sorghum, and Johnsongrass (Sorghum halepense [L.] Persoon), from 2013 to 2017 in the continental United States. We sought to determine if the “super-clone” persists in sugarcane aphid samples collected in 2018 from five U.S. states and one territory and to identify the multilocus lineage of samples collected in 2018–2019 from a new host, giant miscanthus, Miscanthus sinensis× Miscanthus sacchariflorus Greef & Deuter ex Hodkinson & Renvoize. Thirty-one samples collected from Columbus grass (Sorghum almum Parodi), Johnsongrass, sorghum, and giant miscanthus in 2018 were genotyped using 9 simple sequence repeat markers; 29 samples had identical alleles to the multilocus lineage F super-clone. All samples (n = 7) collected from giant miscanthus in 2018–2019 also had identical alleles to the predominant genotype.


Plant Disease ◽  
2000 ◽  
Vol 84 (10) ◽  
pp. 1085-1088 ◽  
Author(s):  
S. Schenck ◽  
A. T. Lehrer

Sugarcane, Saccharum spp. hybrid, is widely infected in the United States and many other countries with a yellowing and stunting disease called sugarcane yellow leaf syndrome. The causal agent, Sugarcane yellow leaf virus (ScYLV), is a Polerovirus of the Luteoviridae family. In this study, it was transmitted by the sugarcane aphid, Melanaphis sacchari, and also by the corn leaf aphid, Rhopalosiphum maidis, and the rice root aphid, R. rufiabdominalis. Two other aphids that infest sugarcane in Hawaii did not transmit the virus. Some Hawaiian sugarcane cultivars are susceptible to ScYLV, while others remain virus-free in the field. The latter were not infected when inoculated with viruliferous M. sacchari. Virus-free plants of susceptible cultivars were produced through apical meristem culture and were readily reinfected by viruliferous M. sacchari. They were also quickly reinfected when planted in a field in proximity to other infected sugarcane naturally infested with M. sacchari. Sugarcane cultivars are hybrids of several Saccharum species. In a field-grown collection of Saccharum and related species, 11 to 71% of the clones of four of the species were infected with ScYLV. None of the related genus Erianthus plants were infected, but four clones were infected experimentally by aphid inoculation. A low to moderate percentage of corn, rice, and sorghum seedlings became infected when inoculated with ScYLV, but barley, oats, and wheat proved to be very susceptible. None of seven weeds common in sugarcane fields were infected with ScYLV.


2021 ◽  
Vol 22 (13) ◽  
pp. 7129
Author(s):  
Desalegn D. Serba ◽  
Xiaoxi Meng ◽  
James Schnable ◽  
Elfadil Bashir ◽  
J. P. Michaud ◽  
...  

The sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae) (SCA), has become a major pest of grain sorghum since its appearance in the USA. Several grain sorghum parental lines are moderately resistant to the SCA. However, the molecular and genetic mechanisms underlying this resistance are poorly understood, which has constrained breeding for improved resistance. RNA-Seq was used to conduct transcriptomics analysis on a moderately resistant genotype (TAM428) and a susceptible genotype (Tx2737) to elucidate the molecular mechanisms underlying resistance. Differential expression analysis revealed differences in transcriptomic profile between the two genotypes at multiple time points after infestation by SCA. Six gene clusters had differential expression during SCA infestation. Gene ontology enrichment and cluster analysis of genes differentially expressed after SCA infestation revealed consistent upregulation of genes controlling protein and lipid binding, cellular catabolic processes, transcription initiation, and autophagy in the resistant genotype. Genes regulating responses to external stimuli and stress, cell communication, and transferase activities, were all upregulated in later stages of infestation. On the other hand, expression of genes controlling cell cycle and nuclear division were reduced after SCA infestation in the resistant genotype. These results indicate that different classes of genes, including stress response genes and transcription factors, are responsible for countering the physiological effects of SCA infestation in resistant sorghum plants.


Author(s):  
Liliana Aguilar Marcelino ◽  
Jesús Antonio Pineda Alegría ◽  
David Osvaldo Salinas-Sánchez ◽  
Víctor Manuel Hernández Velázquez ◽  
Gonzalo Iván Silva Aguayo ◽  
...  

The sugarcane aphid, Melanaphis sacchari Zehntner (Hemiptera: Aphididae), is the main pest of sorghum, Sorghum bicolor L. Moench (Poaceae), in Mexico. To control this insect, farmers currently use synthetic chemical insecticides, which are toxic to humans and biodiversity. However, natural products are a promising potential source of safer alternative means to control different agricultural pests. The main objective of this study was to evaluate the insecticidal effect of contact by fumigation of pure molecules of four commercial fatty acids (palmitic, stearic, pentadecanoic and linoleic acids), the phytosterol ß -sitosterol, and the flavonoid rutin. The results showed that fatty acids were the most effective against M. sacchari ; the highest mortality rate (85%) was produced by linoleic acid and the LC 50 was 1,181 ppm, followed by stearic and palmitic acids with mortality percentages of 74 and 63%, respectively, at a concentration of 2,500 ppm at 72 h. The positive control, imidacloprid, had 100% mortality in 24 h and the tween 20 negative control exhibited 4% mortality in 72 h. Our results show that commercial fatty acids are effective against adults of M. sacchari , and can be considered an environmentally friendly alternative to the frequent use of synthetic chemical insecticides.


2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Anne Fischer ◽  
Ivette Santana-Cruz ◽  
Lillian Wambua ◽  
Cassandra Olds ◽  
Charles Midega ◽  
...  

Phytoplasmas are bacterial plant pathogens with devastating impact on agricultural production worldwide. In eastern Africa, Napier grass stunt disease causes serious economic losses in the smallholder dairy industry. This draft genome sequence of “ Candidatus Phytoplasma oryzae” strain Mbita1 provides insight into its genomic organization and the molecular basis of pathogenicity.


Sign in / Sign up

Export Citation Format

Share Document