scholarly journals A Survey of Tick-Borne Bacterial Pathogens in Florida

Insects ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 297 ◽  
Author(s):  
Carrie E. De Jesus ◽  
Claudia Ganser ◽  
William H. Kessler ◽  
Zoe S. White ◽  
Chanakya R. Bhosale ◽  
...  

Within the past three decades, new bacterial etiological agents of tick-borne disease have been discovered in the southeastern U.S., and the number of reported tick-borne pathogen infections has increased. In Florida, few systematic studies have been conducted to determine the presence of tick-borne bacterial pathogens. This investigation examined the distribution and presence of tick-borne bacterial pathogens in Florida. Ticks were collected by flagging at 41 field sites, spanning the climatic regions of mainland Florida. DNA was extracted individually from 1608 ticks and screened for Anaplasma, Borrelia, Ehrlichia and Rickettsia using conventional PCR and primers that amplified multiple species for each genus. PCR positive samples were Sanger sequenced. Four species of ticks were collected: Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. Within these ticks, six bacterial species were identified: Borrelia burgdorferi, Borrelia lonestari, Ehrlichia ewingii, Rickettsia amblyommatis, Rickettsia andeanae, Rickettsia parkeri, and Rickettsia endosymbionts. Pathogenic Borrelia, Ehrlichia, and Rickettsia species were all detected in the North and North-Central Florida counties; however, we found only moderate concordance between the distribution of ticks infected with pathogenic bacteria and human cases of tick-borne diseases in Florida. Given the diversity and numerous bacterial species detected in ticks in Florida, further investigations should be conducted to identify regional hotspots of tick-borne pathogens.

Author(s):  
Madeline P Seagle ◽  
Maximilian R Vierling ◽  
Ryan J Almeida ◽  
D Jacob Clary ◽  
Will Hidell ◽  
...  

Abstract Multiple species of ticks, including Ixodes scapularis (Say, Ixodida:Ixodidae), Amblyomma americanum (L., Ixodida:Ixodidae), and Dermacentor variabilis (Say, Ixodida:Ixodidae), occur in high and increasing abundance in both the northeast and southeast United States. North Carolina is at the nexus of spread of these species, with high occurrence and abundance of I. scapularis to the north and A. americanum to the south. Despite this, there are few records of these species in the Piedmont of North Carolina, including the greater Charlotte metropolitan area. Here, we update the known occurrence and abundance of these species in the North Carolina Piedmont. We surveyed for ticks using cloth drags, CO2 traps, and leaf litter samples at a total of 79 sites within five locations: Mecklenburg County, South Mountains State Park, Stone Mountain State Park, Duke Forest, and Morrow Mountain State Park, all in North Carolina, during the late spring, summer, and fall seasons of 2019. From these surveys, we had only 20 tick captures, illuminating the surprisingly low abundance of ticks in this region of North Carolina. Our results indicate the possibility of underlying habitat and host factors limiting tick distribution and abundance in the North Carolina Piedmont.


Insects ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 190 ◽  
Author(s):  
William H. Kessler ◽  
Claudia Ganser ◽  
Gregory E. Glass

The lone star (Amblyomma americanum), black-legged (Ixodes scapularis) and American dog ticks (Dermacentor variabilis) are species of great public health importance as they are competent vectors of several notable pathogens. While the regional distributions of these species are well characterized, more localized distribution estimates are sparse. We used records of field collected ticks and an ensemble modeling approach to predict habitat suitability for each of these species in Florida. Environmental variables capturing climatic extremes were common contributors to habitat suitability. Most frequently, annual precipitation (Bio12), mean temperature of the driest quarter (Bio9), minimum temperature of the coldest month (Bio6), and mean Normalized Difference Vegetation Index (NDVI) were included in the final models for each species. Agreement between the modeling algorithms used in this study was high and indicated the distribution of suitable habitat for all three species was reduced at lower latitudes. These findings are important for raising awareness of the potential for tick-borne pathogens in Florida.


2004 ◽  
Vol 39 (3) ◽  
pp. 426-432 ◽  
Author(s):  
Alan B. Wells ◽  
Lance A. Durden ◽  
John H. Smoyer

Ticks (Acari: Ixodidae) were collected from family-owned domestic dogs, Canis familiaris L., in Bulloch Co., GA, from 1996 to 2003 and from dogs maintained in a shelter in Emanuel Co., GA, in 2002 and 2003. A total of 2,466 ticks representing 9 species was recovered. The most frequently recovered species from family-owned dogs were the blacklegged tick, Ixodes scapularis Say (54.6% of all ticks from this group of dogs), and American dog tick, Dermacentor variabilis (Say) (27.7%). Collections from shelter-maintained dogs were dominated by the brown dog tick, Rhipicephalus sanguineus (Latreille) (73.6%). Except for 39 nymphs of the lone star tick, Amblyomma americanum (L.), 12 nymphs of R. sanguineus, 7 nymphs of the Gulf Coast tick, Amblyomma maculatum Koch, 1 nymph of D. variabilis and 72 larvae of the gopher tortoise tick, Amblyomma tuberculatum Marx, only adult ticks were present. Seasonally, I. scapularis adults were recorded from October through May and were most common in the fall; whereas, A. americanum, A. maculatum, A. tuberculatum, D. variabilis, and Ixodes affinis Neumann were all found only during the spring, summer and/or early fall. Two species of ticks collected during this study, A. tuberculatum and I. affinis, have Coastal Plain distributions in the southern U.S. and would only be expected to parasitize dogs within this region.


mSphere ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Rafal Tokarz ◽  
Stephen Sameroff ◽  
Teresa Tagliafierro ◽  
Komal Jain ◽  
Simon H. Williams ◽  
...  

ABSTRACT Ticks carry a wide range of known human and animal pathogens and are postulated to carry others with the potential to cause disease. Here we report a discovery effort wherein unbiased high-throughput sequencing was used to characterize the virome of 2,021 ticks, including Ixodes scapularis ( n = 1,138), Amblyomma americanum ( n = 720), and Dermacentor variabilis ( n = 163), collected in New York, Connecticut, and Virginia in 2015 and 2016. We identified 33 viruses, including 24 putative novel viral species. The most frequently detected viruses were phylogenetically related to members of the Bunyaviridae and Rhabdoviridae families, as well as the recently proposed Chuviridae . Our work expands our understanding of tick viromes and underscores the high viral diversity that is present in ticks. IMPORTANCE The incidence of tick-borne disease is increasing, driven by rapid geographical expansion of ticks and the discovery of new tick-associated pathogens. The examination of the tick microbiome is essential in order to understand the relationship between microbes and their tick hosts and to facilitate the identification of new tick-borne pathogens. Genomic analyses using unbiased high-throughput sequencing platforms have proven valuable for investigations of tick bacterial diversity, but the examination of tick viromes has historically not been well explored. By performing a comprehensive virome analysis of the three primary tick species associated with human disease in the United States, we gained substantial insight into tick virome diversity and can begin to assess a potential role of these viruses in the tick life cycle.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260622
Author(s):  
Lennart Justen ◽  
Duncan Carlsmith ◽  
Susan M. Paskewitz ◽  
Lyric C. Bartholomay ◽  
Gebbiena M. Bron

Ticks and tick-borne diseases represent a growing public health threat in North America and Europe. The number of ticks, their geographical distribution, and the incidence of tick-borne diseases, like Lyme disease, are all on the rise. Accurate, real-time tick-image identification through a smartphone app or similar platform could help mitigate this threat by informing users of the risks associated with encountered ticks and by providing researchers and public health agencies with additional data on tick activity and geographic range. Here we outline the requirements for such a system, present a model that meets those requirements, and discuss remaining challenges and frontiers in automated tick identification. We compiled a user-generated dataset of more than 12,000 images of the three most common tick species found on humans in the U.S.: Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis. We used image augmentation to further increase the size of our dataset to more than 90,000 images. Here we report the development and validation of a convolutional neural network which we call “TickIDNet,” that scores an 87.8% identification accuracy across all three species, outperforming the accuracy of identifications done by a member of the general public or healthcare professionals. However, the model fails to match the performance of experts with formal entomological training. We find that image quality, particularly the size of the tick in the image (measured in pixels), plays a significant role in the network’s ability to correctly identify an image: images where the tick is small are less likely to be correctly identified because of the small object detection problem in deep learning. TickIDNet’s performance can be increased by using confidence thresholds to introduce an “unsure” class and building image submission pipelines that encourage better quality photos. Our findings suggest that deep learning represents a promising frontier for tick identification that should be further explored and deployed as part of the toolkit for addressing the public health consequences of tick-borne diseases.


2020 ◽  
Author(s):  
Xiuqing Ma ◽  
Yanqin Li ◽  
Yuan Liang ◽  
Yang Liu ◽  
Ling Yu ◽  
...  

Abstract Background: The rapid identification of pathogenic bacteria is important for determining an appropriate antimicrobial therapy for pneumonia, but traditional bacterial culture is time-consuming and labourious. The aim of this study was to develop and evaluate a DNA microarray assay for the simultaneous detection of fifteen bacterial species directly from respiratory tract specimens in patients with pneumonia. These species included Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Mycoplasma pneumoniae, Enterococcus faecalis, Enterococcus faecium, Enterobacter cloacae, Stenotrophomonas maltophilia, Burkholderia cepacia, Legionella pneumophila and Chlamydia pneumoniae. The 16S rDNA genes and other specific genes of each pathogen were chosen as the amplification targets, amplified via multiplex polymerase chain reaction (PCR), and hybridized to oligonucleotide probes in a microarray.Results: The DNA microarray detection limit was 103 copies/μL. Nineteen standard strains and 119 clinical isolates were correctly detected with our microarray, and 3 nontarget species from 4 clinical isolates were not detected. Additionally, bacterial pathogens were accurately identified when two or three bacterial targets were mixed together. Furthermore, the results for 99.4% (156/157) of clinical specimens were the same as those from a conventional assay.Conclusions: We developed a DNA microarray that could simultaneously detect various bacterial pathogens in pneumonia. The method described here has the potential to provide considerable labour and time savings due to its ability to screen for 15 bacterial pathogens simultaneously.


Toxins ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 576 ◽  
Author(s):  
Duport ◽  
Alpha-Bazin ◽  
Armengaud

Exotoxins contribute to the infectious processes of many bacterial pathogens, mainly by causing host tissue damages. The production of exotoxins varies according to the bacterial species. Recent advances in proteomics revealed that pathogenic bacteria are capable of simultaneously producing more than a dozen exotoxins. Interestingly, these toxins may be subject to post-transcriptional modifications in response to environmental conditions. In this review, we give an outline of different bacterial exotoxins and their mechanism of action. We also report how proteomics contributed to immense progress in the study of toxinogenic potential of pathogenic bacteria over the last two decades.


2020 ◽  
Vol 21 (17) ◽  
pp. 6144 ◽  
Author(s):  
Freya R. Shepherd ◽  
James E. McLaren

The human body frequently encounters harmful bacterial pathogens and employs immune defense mechanisms designed to counteract such pathogenic assault. In the adaptive immune system, major histocompatibility complex (MHC)-restricted αβ T cells, along with unconventional αβ or γδ T cells, respond to bacterial antigens to orchestrate persisting protective immune responses and generate immunological memory. Research in the past ten years accelerated our knowledge of how T cells recognize bacterial antigens and how many bacterial species have evolved mechanisms to evade host antimicrobial immune responses. Such escape mechanisms act to corrupt the crosstalk between innate and adaptive immunity, potentially tipping the balance of host immune responses toward pathological rather than protective. This review examines the latest developments in our knowledge of how T cell immunity responds to bacterial pathogens and evaluates some of the mechanisms that pathogenic bacteria use to evade such T cell immunosurveillance, to promote virulence and survival in the host.


Sign in / Sign up

Export Citation Format

Share Document