scholarly journals Analysis of the Metaphase Chromosome Karyotypes in Imaginal Discs of Aedes communis, Ae. punctor, Ae. intrudens, and Ae. rossicus (Diptera: Culicidae) Mosquitoes

Insects ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Svetlana S. Alekseeva ◽  
Yulia V. Andreeva ◽  
Irina E. Wasserlauf ◽  
Anuarbek K. Sibataev ◽  
Vladimir N. Stegniy

In this study, cytogenetic analysis of the metaphase chromosomes from imaginal discs of Aedes (Diptera: Culicidae) mosquitoes—Aedes communis, Ae. punctor, Ae. intrudens, and Ae. rossicus—was performed. The patterns of C-banding and DAPI staining of the heteroсhromatin and the length of the chromosomes demonstrate species specificity. In particular, the Ae. punctor chromosomes are the shortest compared with Ae. communis, Ae. intrudens, and Ae. rossicus, and they also carry additional C and DAPI bands in intercalary regions. The Ae. intrudens chromosomes are the longest, they have pericentromeric C bands, and they almost lack any DAPI bands near the centromere of chromosome 3 versus Ae. communis, which has the largest pericentromeric DAPI blocks in all three chromosome pairs. Ae. rossicus also possesses DAPI bands in the centromeric regions of all chromosomes, but their staining is weaker compared with those of Ae. communis. Therefore, the analysis of karyotypes is a tool for species-level identification of these mosquitoes.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Farshid O Sirjani ◽  
Edwin E Lewis

Abstract A new dipterous pest is reported, for the first time, on commercial pistachios from Sirjan, Kerman province, Iran. The genus of the insect was determined to be Resseliella Seitner (Diptera: Cecidomyiidae). Adults are light brown to brown in color and 0.8–1.5 mm in length with females, generally, slightly larger than males. Females have an elongated ovipositor, which is characteristic of the genus. Larvae are orange in color, 2–3 mm in length in the later instars, feed under bark without inducing galls, and cause branch dieback on trees of various ages. Brown to black discolorations are observed on plant tissues under bark where the larvae feed. Infestations observed on current and the previous—year’s growths, ranged from 0.5 to 1.2 cm in diameter, and all located in outer branches. Dry leaves and fruit clusters on infested branches remain attached, which may be used to recognize infestation by the gall midge. Dark-colored, sunken spots with splits on the bark located at the base of the wilted sections of the shoots also are symptoms of Resseliella sp. larval activity. Species-level identification of the gall midge is currently underway.


Genetics ◽  
1980 ◽  
Vol 94 (1) ◽  
pp. 115-133 ◽  
Author(s):  
Thomas C Kaufman ◽  
Ricki Lewis ◽  
Barbara Wakimoto

ABSTRACT Cytogenetic evidence is presented demonstrating that the 84A-B interval in the proximal portion of the right arm of chromosome 3 is the residence of a homoeotic gene complex similar to the bithorax locus. This complex, originally defined by the Antennapedia (A n t p) mutation, controls segmentation in the anterior portion of the organism. Different lesions within this complex homoeotically transform portions OI the prothorax, proboscis, antenna and eye and present clear analogies to similar lesions within the bithorax locus.


2016 ◽  
Vol 10 (1) ◽  
pp. 202-208 ◽  
Author(s):  
Marisa Almuzara ◽  
Claudia Barberis ◽  
Viviana Rojas Velázquez ◽  
Maria Soledad Ramirez ◽  
Angela Famiglietti ◽  
...  

Objective:To evaluate the performance of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) by using 190 Catalase-negative Gram-Positive Cocci (GPC) clinical isolates.Methods:All isolates were identified by conventional phenotypic tests following the proposed scheme by Ruoff and Christensen and MALDI-TOF MS (Bruker Daltonics, BD, Bremen, Germany). Two different extraction methods (direct transfer formic acid method on spot and ethanol formic acid extraction method) and different cut-offs for genus/specie level identification were used. The score cut-offs recommended by the manufacturer (≥ 2.000 for species-level, 1.700 to 1.999 for genus level and <1.700 no reliable identification) and lower cut-off scores (≥1.500 for genus level, ≥ 1.700 for species-level and score <1.500 no reliable identification) were considered for identification. A minimum difference of 10% between the top and next closest score was required for a different genus or species.MALDI-TOF MS identification was considered correct when the result obtained from MS database agreed with the phenotypic identification result.When both methods gave discordant results, the 16S rDNA orsodAgenes sequencing was considered as the gold standard identification method. The results obtained by MS concordant with genes sequencing, although discordant with conventional phenotyping, were considered correct. MS results discordant with 16S orsodA identification were considered incorrect.Results:Using the score cut-offs recommended by the manufacturer, 97.37% and 81.05% were correctly identified to genus and species level, respectively. On the other hand, using lower cut-off scores for identification, 97.89% and 94.21% isolates were correctly identified to genus and species level respectively by MALDI-TOF MS and no significant differences between the results obtained with two extraction methods were obtained.Conclusion:The results obtained suggest that MALDI-TOF MS has the potential of being an accurate tool for Catalase-negative GPC identification even for those species with difficult diagnosis asHelcococcus,Abiotrophia,Granulicatella, among others. Nevertheless, expansion of the library, especially including more strains with different spectra on the same species might overcome potential “intraspecies” variability problems. Moreover, a decrease of the identification scores for species and genus-level identification must be considered since it may improve the MALDI-TOF MS accuracy.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4499 ◽  
Author(s):  
Aisha Tahir ◽  
Fatma Hussain ◽  
Nisar Ahmed ◽  
Abdolbaset Ghorbani ◽  
Amer Jamil

In pursuit of developing fast and accurate species-level molecular identification methods, we tested six DNA barcodes, namely ITS2, matK, rbcLa, ITS2+matK, ITS2+rbcLa, matK+rbcLa and ITS2+matK+rbcLa, for their capacity to identify frequently consumed but geographically isolated medicinal species of Fabaceae and Poaceae indigenous to the desert of Cholistan. Data were analysed by BLASTn sequence similarity, pairwise sequence divergence in TAXONDNA, and phylogenetic (neighbour-joining and maximum-likelihood trees) methods. Comparison of six barcode regions showed that ITS2 has the highest number of variable sites (209/360) for tested Fabaceae and (106/365) Poaceae species, the highest species-level identification (40%) in BLASTn procedure, distinct DNA barcoding gap, 100% correct species identification in BM and BCM functions of TAXONDNA, and clear cladding pattern with high nodal support in phylogenetic trees in both families. ITS2+matK+rbcLa followed ITS2 in its species-level identification capacity. The study was concluded with advocating the DNA barcoding as an effective tool for species identification and ITS2 as the best barcode region in identifying medicinal species of Fabaceae and Poaceae. Current research has practical implementation potential in the fields of pharmaco-vigilance, trade of medicinal plants and biodiversity conservation.


2020 ◽  
Vol 15 (15) ◽  
pp. 1453-1464
Author(s):  
Sourav Das ◽  
Yamini Tawde ◽  
Shreya Singh ◽  
Arunaloke Chakrabarti ◽  
Pallab Ray ◽  
...  

Aim: To standardize MALDI-TOF-MS based identification and antifungal susceptibility (AFST) for yeasts directly from automated blood cultures to reduce turnaround time. Materials & methods: Direct-ID after lysis-centrifugation (0.5% SDS) standardized in 40 and validated in 250 yeast positive samples. Direct-AFST was standardized with fluconazole (28 samples) and evaluated (70 samples) for seven antifungals. Results: Direct-ID had a high sensitivity (97.2%) and specificity (94.3%). Correct species-level identification showed 100% in C. tropicalis, C. krusei, C. parapsilosis. Direct-AFST had a 100% categorical agreement with culture-AFST for posaconazole, anidulafungin and >90% categorical agreement for amphotericin B, voriconazole and fluconazole. Conclusion: Direct-ID and subsequent direct-AFST is a rapid and robust method to reduce the turnaround time for the diagnosis of invasive candidiasis.


2019 ◽  
Vol 57 (8) ◽  
pp. 962-968 ◽  
Author(s):  
Sébastien Imbert ◽  
Anne Cécile Normand ◽  
Frédéric Gabriel ◽  
Sophie Cassaing ◽  
Christine Bonnal ◽  
...  

Abstract The taxonomy of Aspergillus species has recently been revolutionized with the introduction of cryptic species and section concepts. However, their species-level identification in routine laboratories remains a challenge. The aim of this study was to prospectively assess the identification accuracy of cryptic species of Aspergillus in various laboratories using the mass spectrometry identification (MSI) platform, an independent and freely accessible online mass spectrometry database. Over a 12-month period, when a select set of MSI users identified cryptic species, they were contacted and requested to send the isolates to our laboratory for sequence-based identification. Sequence and MSI identification results were then compared. During the study period, 5108 Aspergillus isolates were identified using MSI including 1477 (28.9%) cryptic species. A total of 245 isolates that corresponded to 56 cryptic species and 13 sections were randomly selected for DNA sequencing confirmation. Agreement between the two methods was 99.6% at the section level and 66.1% at the species level. However, almost all discrepancies (72/83, 86.7%) were misidentifications between closely related cryptic species belonging to the same section. Fifty-one isolates from noncryptic species were also identified, thus yielding 100% and 92.2% agreement at the section and species level, respectively. Although the MSI fungus database is a reliable tool to identify Aspergillus at the section level, the database still requires adjustment to correctly identify rare or cryptic species at the species level. Nevertheless, the application properly differentiated between cryptic and sensu stricto species in the same section, thus alerting on possible specific isolate characteristics.


2018 ◽  
Vol 12 (10) ◽  
pp. e0006874 ◽  
Author(s):  
Jennifer Mesureur ◽  
Sandrine Arend ◽  
Béatrice Cellière ◽  
Priscillia Courault ◽  
Pierre-Jean Cotte-Pattat ◽  
...  

Zootaxa ◽  
2012 ◽  
Vol 3365 (1) ◽  
pp. 1 ◽  
Author(s):  
FRANCISCO HITA GARCIA ◽  
BRIAN L. FISHER

The taxonomy of the T. bessonii, T. bonibony, T. dysalum, T. marginatum, T. tsingy, and T. weitzeckeri species groups isrevised. A total of 33 species is treated, of which 27 are newly described and one is raised to species status. The T.weitzeckeri group contains the single species T. humbloti Forel, which is of Afrotropical origin and the only representativeof the group in the Malagasy region. The species T. bessonii Forel, T. dysalum Bolton, T. marginatum Forel, and T. stein-heili Forel, which were originally members of the T. weitzeckeri group, are now placed in other groups. Tetramorium bes-sonii is the core species of the T. bessonii group, which also contains the four newly described species T. artemis sp. n., T.malagasy sp. n., T. ryanphelanae sp. n., T. wardi sp. n., and T. orientale Forel stat. n., which was a junior synonym of T.bessonii but is now raised to species rank. The T. dysalum group is a moderately-sized group with ten species, of whichonly T. dysalum and T. steinheili were previously known; the other eight species are all newly described. The newly described species in this group are: T. ambatovy sp. n., T. macki sp. n., T. mallenseana sp. n., T. orc sp. n., T. robitika sp. n.,T. sargina sp. n., T. yammer sp. n., and T. vohitra sp. n. A lectotype and several paralectotypes of T. steinheili are desig-nated. Tetramorium marginatum is the central species of the T. marginatum group, which also includes the five newly de-scribed species T. valky sp. n., T. hector sp. n., T. norvigi sp. n., T. shamshir sp. n., and T. silvicola sp. n. The T. bonibonyand T. tsingy groups represent completely new groups that consist entirely of previously unknown, undescribed species.The first group holds the new species T. bonibony sp. n., T. kali sp. n., T. sada sp. n., T. nosybe sp. n., T. olana sp. n., T.popell sp. n., and T. trafo sp. n. and T. vony sp. n. The last group, the T. tsingy group, only contains the two species T. tyrionsp. n. and T. tsingy sp. n., both among the rarest Tetramorium species in Madagascar. All groups are fully revised withillustrated species-level identification keys, and all species are described/re-described and illustrated with high qualitymontage images. In addition, the current status of the Malagasy Tetramorium species groups is discussed and further modifications are proposed.


Sign in / Sign up

Export Citation Format

Share Document