scholarly journals Host Plants Influence the Symbiont Diversity of Eriosomatinae (Hemiptera: Aphididae)

Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 217
Author(s):  
Ting-Ting Xu ◽  
Li-Yun Jiang ◽  
Jing Chen ◽  
Ge-Xia Qiao

Eriosomatinae is a particular aphid group with typically heteroecious holocyclic life cycle, exhibiting strong primary host plant specialization and inducing galls on primary host plants. Aphids are frequently associated with bacterial symbionts, which can play fundamental roles in the ecology and evolution of their host aphids. However, the bacterial communities in Eriosomatinae are poorly known. In the present study, using high-throughput sequencing of the bacterial 16S ribosomal RNA gene, we surveyed the bacterial flora of eriosomatines and explored the associations between symbiont diversity and aphid relatedness, aphid host plant and geographical distribution. The microbiota of Eriosomatinae is dominated by the heritable primary endosymbiont Buchnera and several facultative symbionts. The primary endosymbiont Buchnera is expectedly the most abundant symbiont across all species. Six facultative symbionts were identified. Regiella was the most commonly identified facultative symbiont, and multiple infections of facultative symbionts were detected in the majority of the samples. Ordination analyses and statistical tests show that the symbiont community of aphids feeding on plants from the family Ulmaceae were distinguishable from aphids feeding on other host plants. Species in Eriosomatinae feeding on different plants are likely to carry different symbiont compositions. The symbiont distributions seem to be not related to taxonomic distance and geographical distance. Our findings suggest that host plants can affect symbiont maintenance, and will improve our understanding of the interactions between aphids, their symbionts and ecological conditions.

2019 ◽  
Vol 79 (4) ◽  
pp. 971-984 ◽  
Author(s):  
Shifen Xu ◽  
Liyun Jiang ◽  
Gexia Qiao ◽  
Jing Chen

AbstractAphids live in symbiosis with a variety of bacteria, including the obligate symbiont Buchnera aphidicola and diverse facultative symbionts. The symbiotic associations for one aphid species, especially for polyphagous species, often differ across populations. In the present study, by using high-throughput 16S rRNA sequencing, we surveyed in detail the microbiota in natural populations of the cotton aphid Aphis gossypii in China and assessed differences in bacterial diversity with respect to host plant and geography. The microbial community of A. gossypii was dominated by a few heritable symbionts. Arsenophonus was the most dominant secondary symbiont, and Spiroplasma was detected for the first time. Statistical tests and ordination analyses showed that host plants rather than geography seemed to have shaped the associated symbiont composition. Special symbiont communities inhabited the Cucurbitaceae-feeding populations, which supported the ecological specialization of A. gossypii on cucurbits from the viewpoint of symbiotic bacteria. Correlation analysis suggested antagonistic interactions between Buchnera and coexisting secondary symbionts and more complicated interactions between different secondary symbionts. Our findings lend further support to an important role of the host plant in structuring symbiont communities of polyphagous aphids and will improve our understanding of the interactions among phytophagous insects, symbionts, and environments.


Author(s):  
Jiali Xing ◽  
Xiaorong Xu ◽  
Xiaohu Luo ◽  
Ruihang Zheng ◽  
Lingyan Mao ◽  
...  

Abstract: High-throughput sequencing was used to analyze the microbial communities in the muscle samples of hairtail fish to study their diversity and dynamic changes during cold-chain circulation. The results showed that the richness and diversity of the microbial community in hairtail fish had a transient decline in 0–24 h and decreased after the first rise during 24–216 h. The diversity and richness of bacteria in cold-chain hairtail fish reached the maximum at 168 h. The Shannon and Simpson diversity indices of the bacteria were 2.96 and 0.16, respectively, and their ACE and Chao1 richness indices were 254.84 and 155.10, respectively. In addition, the dominant bacteria were Proteobacteria in the phylum level, Gammaproteobacteria in the class level, Pseudomonadales in the order level, Pseudomonadaceae in the family level, and Pseudomonas in the genus level, and their relative abundance were 80.52%, 72.11%, 76.68%, 23.25%, and 53.50%, respectively. In this study, the structure of bacterial flora and the dominant bacteria in cold-chain hairtail fish were analyzed by high-throughput sequencing to provide a basis for exploring how to maintain the freshness of hairtail fish and for predicting the shelf-life of hairtail fish.


Zootaxa ◽  
2008 ◽  
Vol 1728 (1) ◽  
pp. 1 ◽  
Author(s):  
KARL N. MAGNACCA ◽  
DAVID FOOTE ◽  
PATRICK M. O’GRADY

The Hawaiian Drosophilidae is one of the best examples of rapid speciation in nature. Nearly 1,000 species of endemic drosophilids have evolved in situ in Hawaii since a single colonist arrived over 25 million years ago. A number of mechanisms, including ecological adaptation, sexual selection, and geographic isolation, have been proposed to explain the evolution of this hyperdiverse group of species. Here, we examine the known ecological associations of 326 species of endemic Hawaiian Drosophilidae in light of the phylogenetic relationships of these species. Our analysis suggests that the long-accepted belief of strict ecological specialization in this group does not hold for all taxa. While many species have a primary host plant family, females will also oviposit on non-preferred host plant taxa. Host shifting is fairly common in some groups, especially the grimshawi and modified mouthparts species groups of Drosophila, and the Scaptomyza subgenus Elmomyza. Associations with types of substrates (bark, leaves, flowers) are more evolutionarily conserved than associations with host plant families. These data not only give us insight into the role ecology has played in the evolution of this large group, but can help in making decisions about the management of rare and endangered host plants and the insects that rely upon them for survival.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1116
Author(s):  
Elkin Aguirre-Ramirez ◽  
Sandra Velasco-Cuervo ◽  
Nelson Toro-Perea

Anastrepha obliqua (Macquart) (Diptera: Tephritidae) is an important pest in the neotropical region. It is considered a polyphagous insect, meaning it infests plants of different taxonomic families and readily colonizes new host plants. The change to new hosts can lead to diversification and the formation of host races. Previous studies investigating the effect of host plants on population structure and selection in Anastrepha obliqua have focused on the use of data from the mitochondrial DNA sequence and microsatellite markers of nuclear DNA, and there are no analyses at the genomic level. To better understand this issue, we used a pooled restriction site-associated DNA sequencing (pooled RAD-seq) approach to assess genomic differentiation and population structure across sympatric populations of Anastrepha obliqua that infest three host plants—Spondias purpurea (red mombin), Mangifera indica (mango) of the family Anacardiaceae and Averrhoa carambola (carambola) of the family Oxalidaceae—in sympatric populations of the species Anastrepha obliqua of Inter-Andean Valley of the Cauca River in southwestern Colombia. Our results show genomic differentiation of populations from carambola compared to mango and red mombin populations, but the genetic structure was mainly established by geography rather than by the host plant. On the other hand, we identified 54 SNPs in 23 sequences significantly associated with the use of the host plant. Of these 23 sequences, we identified 17 candidate genes and nine protein families, of which four protein families are involved in the nutrition of these flies. Future studies should investigate the adaptive processes undergone by phytophagous insects in the Neotropics, using fruit flies as a model and state-of-the-art molecular tools.


2021 ◽  
Vol 9 ◽  
Author(s):  
Valery A. Korneyev

The molecular-based phylogenetic analysis of the subfamily Tephritinae, the subfamily that contains almost all the cecidogenous species of the family Tephritidae, has reassigned several tribes and groups of genera and modified their concepts based on morphology alone to other tribes and, thus, changed the hypothetical scenarios of evolution of fly/host–plant relations and, in particular, the gall induction in different phylogenetic lineages. Gall induction is shown to arise independently within the Myopitini (in two lineages), Cecidocharini, Tomoplagia group of genera, Eurostini, Eutreta, Tephritis group of genera, Platensinini, Campiglossa group of genera, and Sphenella group of genera independently and more or less synchronously due to the shift to host plants with smaller flower heads and sensitive to larval feeding causing tissue proliferation. This was possibly a result of temporary aridization of the grassy biomes in the Nearctic and Afrotropic regions in the late Miocene or early Pliocene.


2016 ◽  
Author(s):  
Ryosuke Nakadai ◽  
Atsushi Kawakita

AbstractThe diversity of herbivorous insects is often considered a function of host plant diversity. However, recent research has uncovered many examples of closely related herbivores using the same host plant(s), suggesting that partitioning of host plants is not the only mechanism generating diversity. Herbivores sharing hosts may utilize different parts of the same plant, but such resource partitioning is often not apparent; hence, the factors that allow closely related herbivores to coexist are still largely undetermined. We examined whether partitioning of phenology or natural enemies may explain the coexistence of leaf cone moths (Caloptilia; Gracillariidae) associated with maples (Acer; Sapindaceae). Larval activity of 10 sympatric Caloptilia species found on nine maple species was monitored every 2–3 weeks for a total of 13 sampling events, and an exhaustive search for internal parasitoid wasps was conducted using high-throughput sequencing. Blocking primers were used to facilitate the detection of wasp larvae inside moth tissue. We found considerable phenological overlap among Caloptilia species, with two clear peaks in July and September–October. Coexisting Caloptilia species also had largely overlapping parasitoid communities; a total of 13 wasp species belonging to four families attacked Caloptilia in a non-specific fashion at an overall parasitism rate of 46.4%. Although coexistence may be facilitated by factors not accounted for in this study, it appears that niche partitioning is not necessary for closely related herbivores to stably coexist on shared hosts. Co-occurrence without resource partitioning may provide an additional axis along which herbivorous insects attain increased species richness.


2020 ◽  
Vol 10 (2) ◽  
pp. 172-178
Author(s):  
Ahmad Irfan Abdul Razak ◽  
Siti Nurlydia Sazali ◽  
Ratnawati Hazali ◽  
Farah Nabillah Abu Hasan Aidil Fitri

The family Fulgoridae is known for their distinct morphological structures and striking colouration. Despite so, comprehensive documentation of insect-plant interaction from this charismatic family is greatly scarce. Presented here are records of plant association across four species of Fulgoridae from Malaysian Borneo. The current study was based on voucher specimens and field samplings from selected localities in Sarawak and Sabah, Malaysian Borneo. A total of 11 species of plants belonging to 11 genera and nine families were recorded. Three fulgorid species namely Penthicodes quadrimaculata, Pyrops intricatus and Py. sultanus shares the same host plant being the mata kucing fruit tree (Dimocarpus longan ssp. malesianus). The most speciose insect-plant association belongs to Pe. farinosa and Py. sultanus with six species documented. This is the first record of host plants reported for Py. intricatus, Pe. farinosa and Pe. quadrimaculata in Malaysian Borneo.   Keywords: Fulgoridae, host plant, insect-plant association, Malaysian Borneo, Sabah, Sarawak


2005 ◽  
Vol 21 (2) ◽  
pp. 233-236 ◽  
Author(s):  
Gustavo Q. Romero ◽  
João Vasconcellos-Neto ◽  
Hipólito F. Paulino Neto

Beetles of the family Cerambycidae can girdle stems and larvae bore live or dead stems of their host plants (Linsley 1961), and when they use active tissues (e.g. xylem), can affect the development and survivorship of their hosts (Nowak et al. 2001). Moreover, borer attack can rapidly stress host plants (Matter 2001), often killing them (Nowak et al. 2001). Consequently, they can cause changes in size structure of the plant population, depending on the intensity of attack and plant survival rates (Caraglio et al. 2001). Cerambycids of the genus Oncideres (Lamiinae) present the most specialized behaviour in host-plant use, in which the female cuts stems with its mandibles and prepares the oviposition site above the cut portion by perforating the bark and then inserting eggs (Caraglio et al. 2001, Rice 1989, 1995).


Author(s):  
M. M. Varabyova ◽  
N. V. Voronova

Aim. Aphids are an interesting model to study the level of the genetic variability since there are species, which differ in the level of host-plant specialization and the peculiarity of a life cycle among them. The mutations observed in COI gene allow defining the interspecific level of the genetic variability in aphids. Methods. The highly conservative COI gene was used to study the level of the genetic variability in aphids. Results. The analysis of nucleotide sequences of COI gene allowed discovering statistically significant differences between generalists with wide spectrum of host plants, generalists with narrow spectrum of host plants and specialists. In addition, the genetic differences were discovered between holocyclic and angolocyclic species of aphids. Conclusions. As a result of the work it was determined that the wide spectrum of host-plants and holocycly are associated with the high level of genetic variability of COI gene in aphids.Keywords: aphids, genetic variability, COI, life cycle, host-plant specialization.


2018 ◽  
Author(s):  
Larose Chloé ◽  
Rasmann Sergio ◽  
Schwander Tanja

AbstractUnderstanding the evolutionary dynamics underlying herbivorous insect mega-diversity requires investigating the ability of insects to shift and adapt to different host plants. Feeding experiments with nine related stick insect species revealed that insects retain the ability to use ancestral host plants after shifting to novel hosts, with host plant shifts generating fundamental feeding niche expansions. These expansions were not accompanied by expansions of the realized feeding niches however, as species on novel hosts are generally ecologically specialized. For shifts from angiosperm to chemically challenging conifer hosts, generalist fundamental feeding niches even evolved jointly with strong host plant specialization, indicating that host plant specialization is more likely driven by species interactions than by constraints imposed by plant chemistry. By coupling analyses of plant chemical compounds, fundamental and ecological feeding niches in multiple insect species, we provide novel insights into the evolutionary dynamics of host range expansion and contraction in herbivorous insects.


Sign in / Sign up

Export Citation Format

Share Document