scholarly journals Introduction of the New Center for Radiopharmaceutical Cancer Research at Helmholtz-Zentrum Dresden-Rossendorf

Instruments ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 9 ◽  
Author(s):  
Martin Kreller ◽  
Hans Pietzsch ◽  
Martin Walther ◽  
Henrik Tietze ◽  
Peter Kaever ◽  
...  

A new Center for Radiopharmaceutical Cancer Research was established at the Helmholtz-Zentrum Dresden-Rossendorf in order to centralize radionuclide production, radiopharmaceutical production and the chemical and biochemical research facilities. The newly installed cyclotron is equipped with two beamlines, two target selectors and several liquid, gas and solid target systems. The cyclotron including the target systems and first results of beam characterization measurements as well as results of the radionuclide production are presented. The produced radionuclides are automatically distributed from the targets to the destination hot cells. This process is supervised and controlled by an in-house developed system.

2021 ◽  
Vol 169 ◽  
pp. 112667
Author(s):  
Margherita Ugoletti ◽  
M. Agostini ◽  
M. Brombin ◽  
F. Molon ◽  
R. Pasqualotto ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Brian A Nosek ◽  
Timothy M Errington

The first results from the Reproducibility Project: Cancer Biology suggest that there is scope for improving reproducibility in pre-clinical cancer research.


1976 ◽  
Vol 32 ◽  
pp. 577-588
Author(s):  
C. Mégessier ◽  
V. Khokhlova ◽  
T. Ryabchikova

My talk will be on the oblique rotator model which was first proposed by Stibbs (1950), and since received success and further developments. I shall present two different attempts at describing a star according to this model and the first results obtained in the framework of a Russian-French collaboration in order to test the precision of the two methods. The aim is to give the best possible representation of the element distributions on the Ap stellar surfaces. The first method is the mathematical formulation proposed by Deutsch (1958-1970) and applied by Deutsch (1958) to HD 125248, by Pyper (1969) to α2CVn and by Mégessier (1975) to 108 Aqr. The other one was proposed by Khokhlova (1974) and used by her group.


1976 ◽  
Vol 32 ◽  
pp. 109-116 ◽  
Author(s):  
S. Vauclair

This paper gives the first results of a work in progress, in collaboration with G. Michaud and G. Vauclair. It is a first attempt to compute the effects of meridional circulation and turbulence on diffusion processes in stellar envelopes. Computations have been made for a 2 Mʘstar, which lies in the Am - δ Scuti region of the HR diagram.Let us recall that in Am stars diffusion cannot occur between the two outer convection zones, contrary to what was assumed by Watson (1970, 1971) and Smith (1971), since they are linked by overshooting (Latour, 1972; Toomre et al., 1975). But diffusion may occur at the bottom of the second convection zone. According to Vauclair et al. (1974), the second convection zone, due to He II ionization, disappears after a time equal to the helium diffusion time, and then diffusion may happen at the bottom of the first convection zone, so that the arguments by Watson and Smith are preserved.


Author(s):  
H. Seiler ◽  
U. Haas ◽  
K.H. Körtje

The physical properties of small metal particles reveal an intermediate position between atomic and bulk material. Especially Ag has shown pronounced size effects. We compared silver layers evaporated in high vacuum with cluster layers of small silver particles, evaporated in N2 at a pressure of about 102 Pa. The investigations were performed by electron optical methods (TEM, SEM, EELS) and by Photoacoustic (PA) Spectroscopy (gas-microphone detection).The observation of cluster layers with TEM and high resolution SEM show small silver particles with diameters of about 50 nm (Fig. 1 and Figure 2, respectively). The electron diffraction patterns of homogeneous Ag layers and of cluster layers are similar, whereas the low loss EELS spectra due to plasmon excitation are quite different. Fig. 3 and Figure 4 show first results of EELS spectra of a cluster layer of small silver particles on carbon foil and of a homogeneous Ag layer, respectively.


Author(s):  
H.S. von Harrach ◽  
D.E. Jesson ◽  
S.J. Pennycook

Phase contrast TEM has been the leading technique for high resolution imaging of materials for many years, whilst STEM has been the principal method for high-resolution microanalysis. However, it was demonstrated many years ago that low angle dark-field STEM imaging is a priori capable of almost 50% higher point resolution than coherent bright-field imaging (i.e. phase contrast TEM or STEM). This advantage was not exploited until Pennycook developed the high-angle annular dark-field (ADF) technique which can provide an incoherent image showing both high image resolution and atomic number contrast.This paper describes the design and first results of a 300kV field-emission STEM (VG Microscopes HB603U) which has improved ADF STEM image resolution towards the 1 angstrom target. The instrument uses a cold field-emission gun, generating a 300 kV beam of up to 1 μA from an 11-stage accelerator. The beam is focussed on to the specimen by two condensers and a condenser-objective lens with a spherical aberration coefficient of 1.0 mm.


Author(s):  
W.W. Adams ◽  
G. Price ◽  
A. Krause

It has been shown that there are numerous advantages in imaging both coated and uncoated polymers in scanning electron microscopy (SEM) at low voltages (LV) from 0.5 to 2.0 keV compared to imaging at conventional voltages of 10 to 20 keV. The disadvantages of LVSEM of degraded resolution and decreased beam current have been overcome with the new generation of field emission gun SEMs. In imaging metal coated polymers in LVSEM beam damage is reduced, contrast is improved, and charging from irregularly shaped features (which may be unevenly coated) is reduced or eliminated. Imaging uncoated polymers in LVSEM allows direct observation of the surface with little or no charging and with no alterations of surface features from the metal coating process required for higher voltage imaging. This is particularly important for high resolution (HR) studies of polymers where it is desired to image features 1 to 10 nm in size. Metal sputter coating techniques produce a 10 - 20 nm film that has its own texture which can obscure topographical features of the original polymer surface. In examining thin, uncoated insulating samples on a conducting substrate at low voltages the effect of sample-beam interactions on image formation and resolution will differ significantly from the effect at higher accelerating voltages. We discuss here sample-beam interactions in single crystals on conducting substrates at low voltages and also present the first results on HRSEM of single crystal morphologies which show some of these effects.


2008 ◽  
Vol 44 ◽  
pp. 11-26 ◽  
Author(s):  
Ralph Beneke ◽  
Dieter Böning

Human performance, defined by mechanical resistance and distance per time, includes human, task and environmental factors, all interrelated. It requires metabolic energy provided by anaerobic and aerobic metabolic energy sources. These sources have specific limitations in the capacity and rate to provide re-phosphorylation energy, which determines individual ratios of aerobic and anaerobic metabolic power and their sustainability. In healthy athletes, limits to provide and utilize metabolic energy are multifactorial, carefully matched and include a safety margin imposed in order to protect the integrity of the human organism under maximal effort. Perception of afferent input associated with effort leads to conscious or unconscious decisions to modulate or terminate performance; however, the underlying mechanisms of cerebral control are not fully understood. The idea to move borders of performance with the help of biochemicals is two millennia old. Biochemical findings resulted in highly effective substances widely used to increase performance in daily life, during preparation for sport events and during competition, but many of them must be considered as doping and therefore illegal. Supplements and food have ergogenic potential; however, numerous concepts are controversially discussed with respect to legality and particularly evidence in terms of usefulness and risks. The effect of evidence-based nutritional strategies on adaptations in terms of gene and protein expression that occur in skeletal muscle during and after exercise training sessions is widely unknown. Biochemical research is essential for better understanding of the basic mechanisms causing fatigue and the regulation of the dynamic adaptation to physical and mental training.


Sign in / Sign up

Export Citation Format

Share Document