scholarly journals 2-Stroke Scavenging in Conventional and Minimally-Modified 4-Stroke Engines for Heavy Duty Applications at Low to Medium Speeds

Inventions ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 44
Author(s):  
Dirk Rueter

The transformation of a standard 4-stroke cylinder head into a torque-improved and gradually more efficient 2-stroke design is discussed. The concept with an effective loop scavenging via an extended inlet valve holds promise for engines at low- to medium-rotational speeds for typical designs of conventional 4-stroke cylinder heads. Calculations, flow simulations, and visualizations of experimental flows in relevant geometries and time scales indicate feasibility, followed by a small engine demonstration. Based on presumably long-forgotten and outdated patents, and the central topic of this contribution, an additional jockey rides on the inlet valve’s disk (facing away from the combustion chamber) and reshapes the in-cylinder flow into a reverted tumble. A quick gas exchange with a well-suppressed shortcut into the open exhaust is approached. For overall mechanical efficiency, the required charge pressure for scavenging is of paramount importance due to the short scavenging time and the intake’s reduced cross-section. Herein, still acceptable charging pressures are reported for scavenging periods equivalent to low or medium rotational speeds, as characteristic for heavy-duty applications. Using widely available components (charger, direct injection, variable camshaft angles) an increased engine efficiency is suggested due to the 2-stroke’s downsizing effect (relatively less internal friction as well as the promise of more torque and a decreased size).

Author(s):  
Brian L. Rhoades

A gas reaction chamber has been designed and constructed for the JEM 7A transmission electron microscope which is based on a notably successful design by Hashimoto et. al. but which provides specimen tilting facilities of ± 15° aboutany axis in the plane of the specimen.It has been difficult to provide tilting facilities on environmental chambers for 100 kV microscopes owing to the fundamental lack of available space within the objective lens and the scope of structural investigations possible during dynamic experiments has been limited with previous specimen chambers not possessing this facility.A cross sectional diagram of the specimen chamber is shown in figure 1. The specimen is placed on a platinum ribbon which is mounted on a mica ring of the type shown in figure 2. The ribbon is heated by direct current, and a thermocouple junction spot welded to the section of the ribbon of reduced cross section enables temperature measurement at the point where localised heating occurs.


2021 ◽  
pp. 146808742110012
Author(s):  
Nicola Giramondi ◽  
Anders Jäger ◽  
Daniel Norling ◽  
Anders Christiansen Erlandsson

Thanks to its properties and production pathways, ethanol represents a valuable alternative to fossil fuels, with potential benefits in terms of CO2, NOx, and soot emission reduction. The resistance to autoignition of ethanol necessitates an ignition trigger in compression-ignition engines for heavy-duty applications, which in the current study is a diesel pilot injection. The simultaneous direct injection of pure ethanol as main fuel and diesel as pilot fuel through separate injectors is experimentally investigated in a heavy-duty single cylinder engine at a low and a high load point. The influence of the nozzle hole number and size of the diesel pilot injector on ethanol combustion and engine performance is evaluated based on an injection timing sweep using three diesel injector configurations. The tested configurations have the same geometric total nozzle area for one, two and four diesel sprays. The relative amount of ethanol injected is swept between 78 – 89% and 91 – 98% on an energy basis at low and high load, respectively. The results show that mixing-controlled combustion of ethanol is achieved with all tested diesel injector configurations and that the maximum combustion efficiency and variability levels are in line with conventional diesel combustion. The one-spray diesel injector is the most robust trigger for ethanol ignition, as it allows to limit combustion variability and to achieve higher combustion efficiencies compared to the other diesel injector configurations. However, the two- and four-spray diesel injectors lead to higher indicated efficiency levels. The observed difference in the ethanol ignition dynamics is evaluated and compared to conventional diesel combustion. The study broadens the knowledge on ethanol mixing-controlled combustion in heavy-duty engines at various operating conditions, providing the insight necessary for the optimization of the ethanol-diesel dual-injection system.


Fuel ◽  
2010 ◽  
Vol 89 (3) ◽  
pp. 752-759 ◽  
Author(s):  
G.P. McTaggart-Cowan ◽  
S.N. Rogak ◽  
S.R. Munshi ◽  
P.G. Hill ◽  
W.K. Bushe

Author(s):  
M. Yılmaz ◽  
M. Zafer Gul ◽  
Y. Yukselenturk ◽  
B. Akay ◽  
H. Koten

It is estimated by the experts in the automotive industry that diesel engines on the transport market should increase within the years to come due to their high thermal efficiency coupled with low carbon dioxide (CO2) emissions, provided their nitrogen oxides (NOx) and particulate emissions are reduced. At present, adequate after-treatments, NOx and particulates matter (PM) traps are developed and industrialized with still concerns about fuel economy, robustness, sensitivity to fuel sulfur and cost because of their complex and sophisticated control strategy. New combustion processes focused on clean diesel combustion are investigated for their potential to achieve near zero particulate and NOx emissions. Their main drawbacks are increased level of unburned hydrocarbons (HC) and carbon monoxide (CO) emissions, combustion control at high load and limited operating range and power output. In this work, cold flow simulations for a single cylinder of a nine-liter (6 cylinder × 1.5 lt.) diesel engine have been performed to find out flow development and turbulence generation in the piston-cylinder assembly. In this study, the goal is to understand the flow field and the combustion process in order to be able to suggest some improvements on the in-cylinder design of an engine. Therefore combustion simulations of the engine have been performed to find out flow development and emission generation in the cylinder. Moreover, the interaction of air motion with high-pressure fuel spray injected directly into the cylinder has also been carried out. A Lagrangian multiphase model has been applied to the in-cylinder spray-air motion interaction in a heavy-duty CI engine under direct injection conditions. A comprehensive model for atomization of liquid sprays under high injection pressures has been employed. The combustion is modeled via a new combustion model ECFM-3Z (Extended Coherent Flame Model) developed at IFP. Finally, a calculation on an engine configuration with compression, spray injection and combustion in a direct injection Diesel engine is presented. Further investigation has also been performed in-cylinder design parameters in a DI diesel engine that result in low emissions by effect of high turbulence level. The results are widely in agreement qualitatively with the previous experimental and computational studies in the literature.


1988 ◽  
Author(s):  
Toshiyuki Seko ◽  
Shinji Kobayashi ◽  
Yong Kil Kim

2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Jue Li ◽  
Timothy J. Jacobs ◽  
Tushar Bera ◽  
Michael A. Parkes

This study investigates the effects of engine bore size on diesel engine performance and combustion characteristics, including in-cylinder pressure, ignition delay, burn duration, and fuel conversion efficiency, using experiments between two diesel engines of different bore sizes. This study is part of a larger effort to discover how fuel property effects on combustion, engine efficiency, and emissions may change for differently sized engines. For this specific study, which is centered only on diagnosing the role of engine bore size on engine efficiency for a typical fuel, the engine and combustion characteristics are investigated at various injection timings between two differently sized engines. The two engines are nearly identical, except bore size, stroke length, and consequently displacement. Although most of this diagnosis is done with experimental results, a one-dimensional model is also used to calculate turbulence intensities with respect to geometric factors; these results help to explain observed differences in heat transfer characteristics of the two engines. The results are compared at the same brake mean effective pressure (BMEP) and show that engine bore size has a significant impact on the indicated efficiency. It is found that the larger bore engine has a higher indicated efficiency than the smaller displaced engine. Although the larger engine has higher turbulence intensities, longer burn durations, and higher exhaust temperature, the lower surface area to volume ratio and lower reaction temperature leads to lower heat losses to the cylinder walls. The difference in the heat loss to the cylinder walls between the two engines is found to increase with increasing engine load. In addition, due to the smaller volume-normalized friction loss, the larger sized engine also has higher mechanical efficiency. In the net, since the brake efficiency is a function of indicated efficiency and mechanical efficiency, the larger sized engine has higher brake efficiency with the difference in brake efficiency between the two engines increasing with increasing engine load. In the interest of efficiency, larger bore designs for a given displacement (i.e., shorter strokes or few number of cylinders) could be a means for future efficiency gains.


Sign in / Sign up

Export Citation Format

Share Document